Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
IEEE Trans Image Process. 2001;10(2):218-30. doi: 10.1109/83.902287.
We present a new class of quadratic filters that are capable of creating spherical, elliptical, hyperbolic and linear decision surfaces which result in better detection and classification capabilities than the linear decision surfaces obtained from correlation filters. Each filter comprises of a number of separately designed linear basis filters. These filters are linearly combined into several macro filters; the output from these macro filters are passed through a magnitude square operation and are then linearly combined using real weights to achieve the quadratic decision surface. For detection, the creation of macro filters (linear combinations of multiple single filters) allows for a substantial computational saving by reducing the number of correlation operations required. In this work, we consider the use of Gabor basis filters; the Gabor filter parameters are separately optimized. The fusion parameters to combine the Gabor filter outputs are optimized using an extended piecewise quadratic neural network (E-PQNN). We demonstrate methods for selecting the number of macro Gabor filters, the filter parameters and the linear and nonlinear combination coefficients. We present preliminary results obtained for an infrared (IR) vehicle detection problem.
我们提出了一类新的二次滤波器,能够生成球形、椭圆形、双曲和线性决策面,从而比相关滤波器获得的线性决策面具有更好的检测和分类能力。每个滤波器由多个单独设计的线性基滤波器组成。这些滤波器被线性组合成几个宏滤波器;这些宏滤波器的输出经过幅度平方运算,然后使用实权重进行线性组合,以实现二次决策面。对于检测,通过创建宏滤波器(多个单滤波器的线性组合)可以大大减少所需的相关操作数量,从而节省大量计算资源。在这项工作中,我们考虑使用 Gabor 基滤波器;Gabor 滤波器参数分别进行优化。使用扩展分段二次神经网络 (E-PQNN) 对组合 Gabor 滤波器输出的融合参数进行优化。我们演示了选择宏 Gabor 滤波器数量、滤波器参数以及线性和非线性组合系数的方法。我们提出了针对红外 (IR) 车辆检测问题的初步结果。