Suppr超能文献

一种适用于在多教师环境中运行的自动机的通用学习算法。

A generalized learning algorithm for an automaton operating in a multiteacher environment.

作者信息

Ansari A, Papavassilopoulos G P

机构信息

Dept. of Electr. & Syst. Eng., Univ. of Southern California, Los Angeles, CA.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 1999;29(5):592-600. doi: 10.1109/3477.790442.

Abstract

Learning algorithms for an automaton operating in a multiteacher environment are considered. These algorithms are classified based on the number of actions given as inputs to the environments and the number of responses (outputs) obtained from the environments. In this paper, we present a general class of learning algorithm for multi-input multi-output (MIMO) models. We show that the proposed learning algorithm is absolutely expedient and epsilon-optimal in the sense of average penalty. The proposed learning algorithm is a generalization of Baba's GAE algorithm and has applications in solving, in a parallel manner, multi-objective optimization problems in which each objective function is disturbed by noise.

摘要

考虑用于在多教师环境中运行的自动机的学习算法。这些算法根据作为环境输入给出的动作数量以及从环境获得的响应(输出)数量进行分类。在本文中,我们提出了一类用于多输入多输出(MIMO)模型的通用学习算法。我们表明,所提出的学习算法在平均惩罚意义上是绝对有利且ε-最优的。所提出的学习算法是巴巴的GAE算法的推广,并且在并行解决每个目标函数受噪声干扰的多目标优化问题中有应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验