Suppr超能文献

基于高效域池设计的无迭代分形图像编码。

Iteration-free fractal image coding based on efficient domain pool design.

机构信息

Department of Information Management, Chao YangUniversity of Technology, Wufeng Taichung, 413 Taiwan, ROC.

出版信息

IEEE Trans Image Process. 2000;9(3):329-39. doi: 10.1109/83.826772.

Abstract

The domain pool design is one of the dominant issues which affect the coding performance of fractal image compression. In this paper, we employ the LBG algorithm and propose a block averaging method to design the efficient domain pools based on a proposed iteration-free fractal image codec. The redundancies between the generated domain blocks are reduced by the proposed methods. Therefore, we can obtain the domain pools that are more efficient than those in the conventional fractal coding schemes and thus the coding performance is improved. On the other hand, the iteration process in the conventional fractal coding scheme not only requires a large size of memory and a high computation complexity but also prolongs the decoding process. The proposed iteration-free fractal codec can overcome the problems above. In computer simulation, both the LBG-based and block-averaging methods for the domain pool design in the proposed iteration free scheme achieve excellent performances. For example, based on the proposed block-averaging method, the decoded Lena image has at least a 0.5 dB higher PSNR (under the same bit rate) and an eight-time faster decoding speed than the conventional fractal coding schemes that require iterations.

摘要

域池设计是影响分形图像压缩编码性能的主要问题之一。本文采用 LBG 算法,并提出一种基于无迭代分形图像编解码器的块平均方法来设计有效的域池。所提出的方法减少了生成域块之间的冗余。因此,我们可以获得比传统分形编码方案更有效的域池,从而提高编码性能。另一方面,传统分形编码方案中的迭代过程不仅需要大量的内存和高计算复杂度,而且还延长了解码过程。所提出的无迭代分形编解码器可以克服上述问题。在计算机模拟中,所提出的无迭代方案中基于 LBG 的域池设计和块平均方法都取得了优异的性能。例如,基于所提出的块平均方法,解码后的 Lena 图像在相同比特率下的 PSNR 至少提高了 0.5dB,并且解码速度比需要迭代的传统分形编码方案快八倍。

相似文献

1
Iteration-free fractal image coding based on efficient domain pool design.
IEEE Trans Image Process. 2000;9(3):329-39. doi: 10.1109/83.826772.
3
Fractal image compression with region-based functionality.
IEEE Trans Image Process. 2002;11(4):351-62. doi: 10.1109/TIP.2002.999669.
4
Combining fractal image compression and vector quantization.
IEEE Trans Image Process. 2000;9(2):197-208. doi: 10.1109/83.821730.
5
Still image coding based on vector quantization and fractal approximation.
IEEE Trans Image Process. 1996;5(4):587-97. doi: 10.1109/83.491335.
6
A fast fractal image coding based on kick-out and zero contrast conditions.
IEEE Trans Image Process. 2003;12(11):1398-403. doi: 10.1109/TIP.2003.817246.
7
Gradient match and side match fractal vector quantizers for images.
IEEE Trans Image Process. 2002;11(1):1-9. doi: 10.1109/83.977877.
8
A novel fractal image compression scheme with block classification and sorting based on Pearson's correlation coefficient.
IEEE Trans Image Process. 2013 Sep;22(9):3690-702. doi: 10.1109/TIP.2013.2268977. Epub 2013 Jun 17.
9
Huber fractal image coding based on a fitting plane.
IEEE Trans Image Process. 2013 Jan;22(1):134-45. doi: 10.1109/TIP.2012.2215619. Epub 2012 Aug 27.
10
A wavelet-based analysis of fractal image compression.
IEEE Trans Image Process. 1998;7(2):141-54. doi: 10.1109/83.660992.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验