Chen Y S, Hung Y P, Fuh C S
Inst. of Inf. Sci., Acad. Sinica, Taipei.
IEEE Trans Image Process. 2001;10(8):1212-22. doi: 10.1109/83.935037.
Block matching is a widely used method for stereo vision, visual tracking, and video compression. Many fast algorithms for block matching have been proposed in the past, but most of them do not guarantee that the match found is the globally optimal match in a search range. This paper presents a new fast algorithm based on the winner-update strategy which utilizes an ascending lower bound list of the matching error to determine the temporary winner. Two lower bound lists derived by using partial distance and by using Minkowski's inequality are described. The basic idea of the winner-update strategy is to avoid, at each search position, the costly computation of the matching error when there exists a lower bound larger than the global minimum matching error. The proposed algorithm can significantly speed up the computation of the block matching because: 1) computational cost of the lower bound we use is less than that of the matching error itself; 2) an element in the ascending lower bound list will be calculated only when its preceding element has already been smaller than the minimum matching error computed so far; 3) for many search positions, only the first several lower bounds in the list need to be calculated. Our experiments have shown that, when applying to motion vector estimation for several widely-used test videos, 92% to 98% of operations can be saved while still guaranteeing the global optimality. Moreover, the proposed algorithm can be easily modified either to meet the limited time requirement or to provide an ordered list of best candidate matches. Our source codes of the proposed algorithm are available at http://smart.iis.sinica.edu.tw/html/winup.html.
块匹配是一种广泛应用于立体视觉、视觉跟踪和视频压缩的方法。过去已经提出了许多用于块匹配的快速算法,但其中大多数都不能保证找到的匹配是搜索范围内的全局最优匹配。本文提出了一种基于胜者更新策略的新快速算法,该算法利用匹配误差的升序下界列表来确定临时胜者。描述了通过使用部分距离和通过使用闵可夫斯基不等式导出的两个下界列表。胜者更新策略的基本思想是,在每个搜索位置,当存在大于全局最小匹配误差的下界时,避免进行代价高昂的匹配误差计算。所提出的算法可以显著加快块匹配的计算速度,原因如下:1)我们使用的下界的计算成本低于匹配误差本身的计算成本;2)升序下界列表中的一个元素只有在其前一个元素已经小于迄今为止计算出的最小匹配误差时才会被计算;3)对于许多搜索位置,只需要计算列表中的前几个下界。我们的实验表明,当应用于几个广泛使用的测试视频的运动矢量估计时,可以节省92%到98%的操作,同时仍能保证全局最优性。此外,所提出的算法可以很容易地修改,以满足有限的时间要求或提供最佳候选匹配的有序列表。我们所提出算法的源代码可在http://smart.iis.sinica.edu.tw/html/winup.html获得。