Suppr超能文献

关于模拟T细胞疫苗对HIV感染和疾病的影响。

On modeling the effects of T-cell vaccines on HIV acquisition and disease.

作者信息

Wick W David

机构信息

Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, LE-400, Seattle, WA 98109, USA.

出版信息

Stat Med. 2008 Oct 15;27(23):4805-16. doi: 10.1002/sim.3198.

Abstract

A 'T-cell vaccine' aims at generating cytotoxic T-lymphocytes (CTLs; the so-called 'killer' T-cells) rather than antibodies (as for traditional vaccines). The first (phase IIb) trials of this concept against HIV/AIDS began in 2004. What can mechanistic modeling contribute to understanding the biological action of this class of vaccines, if any? Models are appropriate in any discussion of three potential vaccine effects: on acquisition of infection; on state of disease ('viral load', VL) after infection; and on preventing escape from immune control. Concerning the first two, P. Gilbert, S. Self and I introduced new stochastic models of early HIV infection and the CTL response, and, making use of recent estimates (derived in collaboration with O. Yang and L. Corey) of the rate that CTLs can kill HIV-infected cells, made the (surprising?) discovery that CTLs might prevent some infections--as the trial designers implicitly acknowledged when they chose the dual end points of the study. On sustaining control, we have derived a theoretical formula for the rate of escape by stepwise mutation and a new method of simulating HIV and CTL dynamics in vivo (permitting new mutant strains a stochastic evolution--essential, in our view). These quantitative models and simulation techniques can also prove useful to biostatisticians. For example, in preparation for the STEP trials, Gilbert, Bosch, and Hudgens developed a novel technique for estimating a causal effect of a vaccine on VL while accounting for post-randomization selection bias. By simulating thousands of trials, we demonstrated that GBH's method can correctly identify efficacy while protecting against falsely concluding that the vaccine exacerbates disease. When trial data becomes available, the models may also be exploited to make complementary analyses which, while not relevant to vaccine licensure, may suggest new biological hypotheses.

摘要

“T细胞疫苗”旨在产生细胞毒性T淋巴细胞(CTLs,即所谓的“杀伤性”T细胞),而非传统疫苗那样产生抗体。针对HIV/AIDS的这一概念的首次(IIb期)试验于2004年启动。如果有的话,机理建模能对理解这类疫苗的生物学作用有何贡献呢?在讨论疫苗的三种潜在效应时,模型都是适用的:对感染获得的影响;感染后疾病状态(“病毒载量”,VL);以及防止免疫逃逸。关于前两者,P. 吉尔伯特、S. 塞尔夫和我提出了早期HIV感染和CTL反应的新随机模型,并利用最近(与O. 杨和L. 科里合作得出)的CTL杀伤HIV感染细胞速率的估计值,得出了(令人惊讶的?)发现,即CTL可能预防一些感染——正如试验设计者在选择研究的双重终点时隐含承认的那样。关于维持控制,我们推导了逐步突变逃逸率的理论公式以及一种模拟体内HIV和CTL动态的新方法(允许新的突变株进行随机进化——在我们看来这是必不可少的)。这些定量模型和模拟技术对生物统计学家也可能有用。例如,在筹备STEP试验时,吉尔伯特、博施和哈金斯开发了一种新技术,在考虑随机化后选择偏倚的情况下估计疫苗对病毒载量的因果效应。通过模拟数千次试验,我们证明GBH方法可以正确识别疗效,同时防止错误地得出疫苗会加重疾病的结论。当试验数据可用时,这些模型也可用于进行补充分析,这些分析虽然与疫苗许可无关,但可能提出新的生物学假设。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验