Suppr超能文献

使用仿射不变量和凸包进行图像配准与目标识别。

Image registration and object recognition using affine invariants and convex hulls.

作者信息

Yang Z, Cohen F S

机构信息

KLA-Tencor Corp., San Jose, CA 95134, USA.

出版信息

IEEE Trans Image Process. 1999;8(7):934-46. doi: 10.1109/83.772236.

Abstract

This paper is concerned with the problem of feature point registration and scene recognition from images under weak perspective transformations which are well approximated by affine transformations and under possible occlusion and/or appearance of new objects. It presents a set of local absolute affine invariants derived from the convex hull of scattered feature points (e.g., fiducial or marking points, corner points, inflection points, etc.) extracted from the image. The affine invariants are constructed from the areas of the triangles formed by connecting three vertices among a set of four consecutive vertices (quadruplets) of the convex hull, and hence do make direct use of the area invariance property associated with the affine transformation. Because they are locally constructed, they are very well suited to handle the occlusion and/or appearance of new objects. These invariants are used to establish the correspondences between the convex hull vertices of a test image with a reference image in order to undo the affine transformation between them. A point matching approach for recognition follows this. The time complexity for registering L feature points on the test image with N feature points of the reference image is of order O(N x L). The method has been tested on real indoor and outdoor images and performs well.

摘要

本文关注的是在弱透视变换(可由仿射变换很好地近似)以及可能存在遮挡和/或新物体出现的情况下,从图像中进行特征点配准和场景识别的问题。它提出了一组局部绝对仿射不变量,这些不变量源自从图像中提取的散射特征点(例如基准点或标记点、角点、拐点等)的凸包。仿射不变量由凸包的一组四个连续顶点(四元组)中连接三个顶点所形成的三角形的面积构建而成,因此确实直接利用了与仿射变换相关的面积不变性属性。由于它们是局部构建的,所以非常适合处理新物体的遮挡和/或出现情况。这些不变量用于在测试图像的凸包顶点与参考图像之间建立对应关系,以便消除它们之间的仿射变换。随后采用一种点匹配方法进行识别。在测试图像上用参考图像的(N)个特征点配准(L)个特征点的时间复杂度为(O(N×L))量级。该方法已在真实的室内和室外图像上进行了测试,效果良好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验