Kim C T, Lee J J
Department of Computer Science and Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejon, Korea.
IEEE Trans Neural Netw. 2008 Feb;19(2):371-5. doi: 10.1109/TNN.2007.911739.
The variable projection (VP) method for separable nonlinear least squares (SNLLS) is presented and incorporated into the Levenberg-Marquardt optimization algorithm for training two-layered feedforward neural networks. It is shown that the Jacobian of variable projected networks can be computed by simple modification of the backpropagation algorithm. The suggested algorithm is efficient compared to conventional techniques such as conventional Levenberg-Marquardt algorithm (LMA), hybrid gradient algorithm (HGA), and extreme learning machine (ELM).
提出了用于可分离非线性最小二乘(SNLLS)的变量投影(VP)方法,并将其纳入Levenberg-Marquardt优化算法中,用于训练两层前馈神经网络。结果表明,通过对反向传播算法进行简单修改,即可计算变量投影网络的雅可比矩阵。与传统技术(如传统Levenberg-Marquardt算法(LMA)、混合梯度算法(HGA)和极限学习机(ELM))相比,所提出的算法效率更高。