Kaiser Electronics, San Jose, CA.
IEEE Trans Image Process. 1996;5(8):1229-42. doi: 10.1109/83.506758.
The paper describes a lossy image codec that uses a noncausal (or bilateral) prediction model coupled with vector quantization. The noncausal prediction model is an alternative to the causal (or unilateral) model that is commonly used in differential pulse code modulation (DPCM) and other codecs with a predictive component. We show how to obtain a recursive implementation of the noncausal image model without compromising its optimality and how to apply this in coding in much the same way as a causal predictor. We report experimental compression results that demonstrate the superiority of using a noncausal model based predictor over using traditional causal predictors. The codec is shown to produce high-quality compressed images at low bit rates such as 0.375 b/pixel. This quality is contrasted with the degraded images that are produced at the same bit rates by codecs using causal predictors or standard discrete cosine transform/Joint Photographic Experts Group-based (DCT/JPEG-based) algorithms.
本文描述了一种使用非因果(或双边)预测模型结合矢量量化的有损图像编解码器。非因果预测模型是一种替代常用的差分脉冲编码调制(DPCM)和其他具有预测分量的编解码器中的因果(或单边)模型的方法。我们展示了如何在不影响其最优性的情况下获得非因果图像模型的递归实现,以及如何以与因果预测器大致相同的方式将其应用于编码。我们报告了实验压缩结果,证明了使用基于非因果模型的预测器优于使用传统因果预测器的优越性。该编解码器在低比特率(如 0.375 b/pixel)下能够生成高质量的压缩图像。与使用因果预测器或标准离散余弦变换/联合图像专家组(DCT/JPEG)算法的编解码器在相同比特率下生成的质量较差的图像形成对比。