Suppr超能文献

皮层感受野的空间异质性及其对多感官相互作用的影响。

Spatial heterogeneity of cortical receptive fields and its impact on multisensory interactions.

作者信息

Carriere Brian N, Royal David W, Wallace Mark T

机构信息

Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA.

出版信息

J Neurophysiol. 2008 May;99(5):2357-68. doi: 10.1152/jn.01386.2007. Epub 2008 Feb 20.

Abstract

Investigations of multisensory processing at the level of the single neuron have illustrated the importance of the spatial and temporal relationship of the paired stimuli and their relative effectiveness in determining the product of the resultant interaction. Although these principles provide a good first-order description of the interactive process, they were derived by treating space, time, and effectiveness as independent factors. In the anterior ectosylvian sulcus (AES) of the cat, previous work hinted that the spatial receptive field (SRF) architecture of multisensory neurons might play an important role in multisensory processing due to differences in the vigor of responses to identical stimuli placed at different locations within the SRF. In this study the impact of SRF architecture on cortical multisensory processing was investigated using semichronic single-unit electrophysiological experiments targeting a multisensory domain of the cat AES. The visual and auditory SRFs of AES multisensory neurons exhibited striking response heterogeneity, with SRF architecture appearing to play a major role in the multisensory interactions. The deterministic role of SRF architecture was tightly coupled to the manner in which stimulus location modulated the responsiveness of the neuron. Thus multisensory stimulus combinations at weakly effective locations within the SRF resulted in large (often superadditive) response enhancements, whereas combinations at more effective spatial locations resulted in smaller (additive/subadditive) interactions. These results provide important insights into the spatial organization and processing capabilities of cortical multisensory neurons, features that may provide important clues as to the functional roles played by this area in spatially directed perceptual processes.

摘要

在单个神经元水平上对多感觉处理的研究表明,配对刺激的空间和时间关系及其在确定相互作用结果产物方面的相对有效性非常重要。尽管这些原则为相互作用过程提供了很好的一阶描述,但它们是通过将空间、时间和有效性视为独立因素推导出来的。在猫的前外侧沟(AES)中,先前的研究暗示,由于对放置在空间感受野(SRF)内不同位置的相同刺激的反应强度不同,多感觉神经元的SRF结构可能在多感觉处理中起重要作用。在本研究中,使用针对猫AES多感觉区域的半慢性单单位电生理实验,研究了SRF结构对皮质多感觉处理的影响。AES多感觉神经元的视觉和听觉SRF表现出显著的反应异质性,SRF结构似乎在多感觉相互作用中起主要作用。SRF结构的决定性作用与刺激位置调节神经元反应性的方式紧密相关。因此,在SRF内弱有效位置的多感觉刺激组合导致大的(通常是超相加性的)反应增强,而在更有效空间位置的组合导致较小的(相加性/次相加性)相互作用。这些结果为皮质多感觉神经元的空间组织和处理能力提供了重要见解,这些特征可能为该区域在空间定向感知过程中所起的功能作用提供重要线索。

相似文献

1
Spatial heterogeneity of cortical receptive fields and its impact on multisensory interactions.
J Neurophysiol. 2008 May;99(5):2357-68. doi: 10.1152/jn.01386.2007. Epub 2008 Feb 20.
2
Spatial receptive field organization of multisensory neurons and its impact on multisensory interactions.
Hear Res. 2009 Dec;258(1-2):47-54. doi: 10.1016/j.heares.2009.08.003. Epub 2009 Aug 19.
4
Spatiotemporal architecture of cortical receptive fields and its impact on multisensory interactions.
Exp Brain Res. 2009 Sep;198(2-3):127-36. doi: 10.1007/s00221-009-1772-y. Epub 2009 Mar 24.
5
Spatial determinants of multisensory integration in cat superior colliculus neurons.
J Neurophysiol. 1996 May;75(5):1843-57. doi: 10.1152/jn.1996.75.5.1843.
6
Two cortical areas mediate multisensory integration in superior colliculus neurons.
J Neurophysiol. 2001 Feb;85(2):506-22. doi: 10.1152/jn.2001.85.2.506.
7
Visual deprivation alters the development of cortical multisensory integration.
J Neurophysiol. 2007 Nov;98(5):2858-67. doi: 10.1152/jn.00587.2007. Epub 2007 Aug 29.
8
Representation and integration of multiple sensory inputs in primate superior colliculus.
J Neurophysiol. 1996 Aug;76(2):1246-66. doi: 10.1152/jn.1996.76.2.1246.
10
Neonatal cortical ablation disrupts multisensory development in superior colliculus.
J Neurophysiol. 2006 Mar;95(3):1380-96. doi: 10.1152/jn.00880.2005. Epub 2005 Nov 2.

引用本文的文献

2
Shifts in Audiovisual Processing in Healthy Aging.
Curr Behav Neurosci Rep. 2017 Sep;4(3):198-208. doi: 10.1007/s40473-017-0124-7. Epub 2017 Aug 10.
3
Multisensory Integration in Cochlear Implant Recipients.
Ear Hear. 2017 Sep/Oct;38(5):521-538. doi: 10.1097/AUD.0000000000000435.
4
Multisensory Processes: A Balancing Act across the Lifespan.
Trends Neurosci. 2016 Aug;39(8):567-579. doi: 10.1016/j.tins.2016.05.003. Epub 2016 Jun 6.
6
Stimulus intensity modulates multisensory temporal processing.
Neuropsychologia. 2016 Jul 29;88:92-100. doi: 10.1016/j.neuropsychologia.2016.02.016. Epub 2016 Feb 23.
7
Interactions between space and effectiveness in human multisensory performance.
Neuropsychologia. 2016 Jul 29;88:83-91. doi: 10.1016/j.neuropsychologia.2016.01.031. Epub 2016 Jan 27.
8
Behavioral, perceptual, and neural alterations in sensory and multisensory function in autism spectrum disorder.
Prog Neurobiol. 2015 Nov;134:140-60. doi: 10.1016/j.pneurobio.2015.09.007. Epub 2015 Oct 9.
9
Relative unisensory strength and timing predict their multisensory product.
J Neurosci. 2015 Apr 1;35(13):5213-20. doi: 10.1523/JNEUROSCI.4771-14.2015.
10
Impact prediction by looming visual stimuli enhances tactile detection.
J Neurosci. 2015 Mar 11;35(10):4179-89. doi: 10.1523/JNEUROSCI.3031-14.2015.

本文引用的文献

2
Auditory cortical receptive fields: stable entities with plastic abilities.
J Neurosci. 2007 Sep 26;27(39):10372-82. doi: 10.1523/JNEUROSCI.1462-07.2007.
3
Representation and integration of auditory and visual stimuli in the primate ventral lateral prefrontal cortex.
Cereb Cortex. 2007 Sep;17 Suppl 1(Suppl 1):i61-9. doi: 10.1093/cercor/bhm099. Epub 2007 Jul 18.
4
A Bayesian model unifies multisensory spatial localization with the physiological properties of the superior colliculus.
Exp Brain Res. 2007 Jun;180(1):153-61. doi: 10.1007/s00221-006-0847-2. Epub 2007 Feb 14.
5
Superadditivity in multisensory integration: putting the computation in context.
Neuroreport. 2007 May 28;18(8):787-92. doi: 10.1097/WNR.0b013e3280c1e315.
6
Does attention play a role in dynamic receptive field adaptation to changing acoustic salience in A1?
Hear Res. 2007 Jul;229(1-2):186-203. doi: 10.1016/j.heares.2007.01.009. Epub 2007 Jan 16.
7
Neuronal oscillations and multisensory interaction in primary auditory cortex.
Neuron. 2007 Jan 18;53(2):279-92. doi: 10.1016/j.neuron.2006.12.011.
8
The development of cortical multisensory integration.
J Neurosci. 2006 Nov 15;26(46):11844-9. doi: 10.1523/JNEUROSCI.3295-06.2006.
9
Integration of auditory and visual communication information in the primate ventrolateral prefrontal cortex.
J Neurosci. 2006 Oct 25;26(43):11138-47. doi: 10.1523/JNEUROSCI.3550-06.2006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验