Suppr超能文献

吸附平衡数据的最小二乘回归:比较不同方法

Least-squares regression of adsorption equilibrium data: comparing the options.

作者信息

El-Khaiary Mohammad I

机构信息

Chemical Engineering Department, Faculty of Engineering, Alexandria University, El-Hadara, Alexandria, Egypt.

出版信息

J Hazard Mater. 2008 Oct 1;158(1):73-87. doi: 10.1016/j.jhazmat.2008.01.052. Epub 2008 Jan 20.

Abstract

Experimental and simulated adsorption equilibrium data were analyzed by different methods of least-squares regression. The methods used were linear regression, nonlinear regression, and orthogonal distance regression. The results of the regression analysis of the experimental data showed that the different regression methods produced different estimates of the adsorption isotherm parameters, and consequently, different conclusions about the surface properties of the adsorbent and the mechanism of adsorption. A Langmuir-type simulated data set was calculated and several levels of random error were added to the data set. The results of regression analysis of the simulated data set showed that orthogonal distance regression gives the most accurate and efficient estimates of the isotherm parameters. Nonlinear regression and one form of the linearized Langmuir isotherm also gave accurate estimates, but only at low levels of random error.

摘要

采用不同的最小二乘回归方法对实验和模拟的吸附平衡数据进行了分析。所使用的方法有线性回归、非线性回归和正交距离回归。实验数据的回归分析结果表明,不同的回归方法对吸附等温线参数给出了不同的估计值,因此,关于吸附剂的表面性质和吸附机理也得出了不同的结论。计算了一个朗缪尔型模拟数据集,并向数据集中添加了几个水平的随机误差。模拟数据集的回归分析结果表明,正交距离回归对等温线参数给出了最准确和有效的估计值。非线性回归和线性化朗缪尔等温线的一种形式也给出了准确的估计值,但仅在低水平随机误差情况下。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验