Suppr超能文献

通过增大相息图尺寸降低量化相息图的误差

Error reduction of quantized kinoforms by means of increasing the kinoform size.

作者信息

Yang S, Shimomura T

出版信息

Appl Opt. 1998 Oct 10;37(29):6931-6. doi: 10.1364/ao.37.006931.

Abstract

There are two kinds of method that utilize the redundancy in kinoform domains for reducing the reconstruction errors of quantized kinoforms. One is the iterative-dummy area (IDA) method, which increases the kinoform size indirectly by the addition of a dummy area to the desired image. The other is the interlacing technique (IT), which increases the kinoform size directly by the interlacing of a number of subkinoforms whose sizes are the same as the desired image. We compare the error reduction of quantized kinoforms between these two methods. Simulation results show that reconstruction errors from the IT method can be reduced further and faster than those from the IDA method when the kinoform size is increased to larger than 4 x 4 times the size of the desired image.

摘要

有两种利用相息图域中的冗余来减少量化相息图重建误差的方法。一种是迭代虚拟区域(IDA)方法,它通过在所需图像上添加虚拟区域来间接增加相息图尺寸。另一种是交错技术(IT),它通过交错多个尺寸与所需图像相同的子相息图来直接增加相息图尺寸。我们比较了这两种方法在量化相息图误差减少方面的情况。仿真结果表明,当相息图尺寸增加到大于所需图像尺寸的4×4倍时,IT方法的重建误差比IDA方法能进一步更快地降低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验