Umecky Tatsuya, Saito Yuria, Okumura Yasue, Maeda Seiji, Sakai Testuo
National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.
J Phys Chem B. 2008 Mar 20;112(11):3357-64. doi: 10.1021/jp711625r. Epub 2008 Feb 28.
Ionization condition and ionic structures of the lithium ionic liquid electrolytes, LiTFSI/EMI-TFSI/(PEG or silica), were investigated through the measurements of ionic conductivity and diffusion coefficient. The size of the hydrodynamic lithium species (rLi) evaluated from the Stokes-Einstein equation was 0.90 nm before gelation with the PEG or silica. This reveals that the TFSI- anions from the solvent are coordinated on Li+ for solvation, forming, for example, Li(TFSI)4(3-) and Li(TFSI)2- in the electrolyte solution. By the dispersion of PEG for gelation, rLi increased up to 1.8 nm with the 10 wt % of PEG. This indicates that the lithium species is directly interacted with the oxygen sites on the polymer chains and the lithium species migrate, reflecting the polymer by hopping from site to site. In case of the silica dispersion, rLi decreased to 0.7 nm at 10 wt % silica. Although the silica surface with silanol groups fundamentally attracts Li+, the lithium does not migrate from site to site on the silica surface as in the gel of the polymer and follows random walk behavior in the network of the liquid-phase pathways in the two-phase gel. In the process, that solvated TFSI- anions are partially removed may be due to the attractive effect of H+, which was dissociated from the silanol group. It is concluded that the dispersed silica is effective to modify the hydrodynamic lithium species to be appropriate for charge transport as reducing the size and anionic charge of Li(TFSI)4(3-) by removing one or two TFSI- anions.
通过测量离子电导率和扩散系数,研究了锂盐离子液体电解质LiTFSI/EMI-TFSI/(聚乙二醇或二氧化硅)的电离条件和离子结构。在用聚乙二醇或二氧化硅凝胶化之前,根据斯托克斯-爱因斯坦方程评估的流体动力学锂物种(rLi)的大小为0.90nm。这表明来自溶剂的TFSI-阴离子在Li+上配位以进行溶剂化,例如在电解质溶液中形成Li(TFSI)4(3-)和Li(TFSI)2-。通过分散聚乙二醇进行凝胶化,当聚乙二醇含量为10wt%时,rLi增加到1.8nm。这表明锂物种与聚合物链上的氧位点直接相互作用,并且锂物种迁移,通过从一个位点跳跃到另一个位点来反映聚合物。在二氧化硅分散的情况下,当二氧化硅含量为10wt%时,rLi降至0.7nm。尽管带有硅醇基团的二氧化硅表面从根本上吸引Li+,但锂不像在聚合物凝胶中那样在二氧化硅表面从一个位点迁移到另一个位点,而是在两相凝胶的液相路径网络中遵循随机游走行为。在此过程中,溶剂化的TFSI-阴离子部分被去除可能是由于从硅醇基团解离的H+的吸引作用。得出的结论是,分散的二氧化硅有效地改变了流体动力学锂物种,使其适合电荷传输,通过去除一个或两个TFSI-阴离子来减小Li(TFSI)4(3-)的尺寸和阴离子电荷。