Tresch Achim, Markowetz Florian
Johannes Gutenberg University Mainz.
Stat Appl Genet Mol Biol. 2008;7(1):Article9. doi: 10.2202/1544-6115.1332. Epub 2008 Mar 1.
Nested Effects Models (NEMs) are a class of graphical models introduced to analyze the results of gene perturbation screens. NEMs explore noisy subset relations between the high-dimensional outputs of phenotyping studies, e.g., the effects showing in gene expression profiles or as morphological features of the perturbed cell. In this paper we expand the statistical basis of NEMs in four directions. First, we derive a new formula for the likelihood function of a NEM, which generalizes previous results for binary data. Second, we prove model identifiability under mild assumptions. Third, we show that the new formulation of the likelihood allows efficiency in traversing model space. Fourth, we incorporate prior knowledge and an automated variable selection criterion to decrease the influence of noise in the data.
嵌套效应模型(NEMs)是一类引入用于分析基因扰动筛选结果的图形模型。NEMs探索表型研究的高维输出之间的噪声子集关系,例如基因表达谱中显示的效应或受扰动细胞的形态特征。在本文中,我们从四个方向扩展了NEMs的统计基础。第一,我们推导了NEM似然函数的新公式,该公式推广了先前针对二元数据的结果。第二,我们在温和假设下证明了模型的可识别性。第三,我们表明似然函数的新公式允许在遍历模型空间时提高效率。第四,我们纳入先验知识和自动变量选择标准以减少数据中噪声的影响。