Suppr超能文献

e-LiSe——一种在(医学在线数据库)海量信息中寻找关键信息的在线工具。

e-LiSe--an online tool for finding needles in the '(Medline) haystack'.

作者信息

Gladki Arek, Siedlecki Pawel, Kaczanowski Szymon, Zielenkiewicz Piotr

机构信息

Bioinformatics Department, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5a, 02-106, Warszawa, Poland.

出版信息

Bioinformatics. 2008 Apr 15;24(8):1115-7. doi: 10.1093/bioinformatics/btn086. Epub 2008 Mar 5.

Abstract

UNLABELLED

Using literature databases one can find not only known and true relations between processes but also less studied, non-obvious associations. The main problem with discovering such type of relevant biological information is 'selection'. The ability to distinguish between a true correlation (e.g. between different types of biological processes) and random chance that this correlation is statistically significant is crucial for any bio-medical research, literature mining being no exception. This problem is especially visible when searching for information which has not been studied and described in many publications. Therefore, a novel bio-linguistic statistical method is required, capable of 'selecting' true correlations, even when they are low-frequency associations. In this article, we present such statistical approach based on Z-score and implemented in a web-based application 'e-LiSe'.

AVAILABILITY

The software is available at http://miron.ibb.waw.pl/elise/

摘要

未标注

利用文献数据库,人们不仅可以找到过程之间已知的真实关系,还能发现研究较少、不明显的关联。发现这类相关生物信息的主要问题是“筛选”。区分真实相关性(例如不同类型生物过程之间的相关性)与该相关性具有统计学意义的随机概率的能力,对于任何生物医学研究都至关重要,文献挖掘也不例外。在搜索许多出版物中尚未研究和描述的信息时,这个问题尤为明显。因此,需要一种新颖的生物语言统计方法,即使在真实相关性为低频关联时也能够“筛选”出它们。在本文中,我们介绍了一种基于Z分数的统计方法,并在基于网络的应用程序“e-LiSe”中实现了该方法。

可用性

该软件可在http://miron.ibb.waw.pl/elise/获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验