Stein Ori, Asscher Micha
Department of Physical Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Israel.
J Phys Chem B. 2008 Apr 3;112(13):3955-62. doi: 10.1021/jp7099493. Epub 2008 Mar 7.
The interactions of water, carbon dioxide, and Xe with octadecanethiol (C(18)H(37)SH, ODT) self-assembled monolayers (SAMs) were studied under ultrahigh vacuum conditions employing temperature-programmed desorption and optical diffraction measurements. The ODT layer was grown on a 1 nm thick gold film deposited over a Ru(001) single-crystal substrate. The gases used in this report differ in their lateral interactions while adsorbed on ODT-SAM being either repulsive (Xe) or attractive (H(2)O, CO(2)). The activation energies for desorption of the first layer from ODT are E(a) = 3.6 +/- 0.9, 4.1 +/- 0.5, and 8.5 +/- 0.9 kcal/mol for Xe, CO(2), and H(2)O, respectively. Sticking probabilities of the three gases on the soft ODT surface are S(0) = 0.7 +/- 0.1, 0.8 +/- 0.1, and 0.95 +/- 0.05 for xenon, CO(2), and water, respectively, derived from the respective adsorption curves. Optical diffraction studies from multilayer coverage grating of Xe on ODT-SAM have demonstrated that sublimation is a thermodynamically more favorable process over diffusion and wetting. The significantly lower binding energy of the first layers of H(2)O and CO(2) adsorbed on the soft surface of ODT compared to that on clean metals and oxides, reflects generally weak (CO(2)) and hydrophobic (H(2)O) interactions that are important for understanding the behavior of these molecules on interfaces that are found in biological systems.
在超高真空条件下,采用程序升温脱附和光学衍射测量方法,研究了水、二氧化碳和氙与十八硫醇(C(18)H(37)SH,ODT)自组装单分子层(SAMs)的相互作用。ODT层生长在沉积于Ru(001)单晶衬底上的1nm厚金膜上。本报告中使用的气体在吸附于ODT-SAM时,其横向相互作用有所不同,要么是排斥性的(氙),要么是吸引性的(水、二氧化碳)。从ODT脱附第一层的活化能,对于氙、二氧化碳和水分别为E(a) = 3.6 +/- 0.9、4.1 +/- 0.5和8.5 +/- 0.9 kcal/mol。根据各自的吸附曲线,三种气体在柔软的ODT表面的黏附概率,对于氙、二氧化碳和水分别为S(0) = 0.7 +/- 0.1、0.8 +/- 0.1和0.95 +/- 0.05。对ODT-SAM上氙的多层覆盖光栅进行的光学衍射研究表明,升华在热力学上比扩散和润湿更有利。与清洁金属和氧化物相比,吸附在ODT柔软表面上的水和二氧化碳第一层的结合能显著更低,这反映了通常较弱的(二氧化碳)和疏水(水)相互作用,这对于理解这些分子在生物系统中界面上的行为很重要。