Amar-Yuli Idit, Wachtel Ellen, Shalev Deborah E, Aserin Abraham, Garti Nissim
Casali Institute of Applied Chemistry, The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
J Phys Chem B. 2008 Apr 3;112(13):3971-82. doi: 10.1021/jp711421k. Epub 2008 Mar 7.
This study reports on the formation of a low viscosity H(II) mesophase at room temperature upon addition of Transcutol (diethylene glycol mono ethyl ether) or ethanol to the ternary mixture of GMO (glycerol monooleate)/TAG (tricaprylin)/water. The microstructure and bulk properties were characterized in comparison with those of the low viscosity HII mesophase formed in the ternary GMO/TAG/water mixture at elevated temperatures (35-40 degrees C). We characterized the role of Transcutol or ethanol as inducers of disorder and surfactant mobility. The techniques used were rheology, differential scanning calorimetry (DSC), wide- and small-angle X-ray scattering (WAXS and SAXS, respectively), NMR (self-diffusion and (2)H NMR), and Fourier transform infrared (FTIR) spectroscopies. The incorporation of either Transcutol or ethanol induced the formation of less ordered HII mesophases with smaller domain sizes and lattice parameters at room temperature (up to 30 degrees C), similar to those found for the GMO/TAG/water mixture at more elevated temperatures (35-40 degrees C). On the basis of our measurements, we suggest that Transcutol or ethanol causes dehydration of the GMO headgroups and enhances the mobility of the GMO chains. As a result, these two small molecules, which compete for water with the GMO polar headgroups, may increase the curvature of the cylindrical micelles and also perhaps reduce their length. This results in the formation of fluid H(II) structures at room temperature (up to 30 degrees C). It is possible that these phases are a prelude to the H(II)-L(2) transformation, which takes place above 35 degrees C.
本研究报告了在转基因甘油单油酸酯(GMO)/三辛酸甘油酯(TAG)/水的三元混合物中加入二乙二醇单乙醚(Transcutol)或乙醇后,在室温下形成低粘度H(II)中间相的情况。将其微观结构和整体性质与在高温(35 - 40摄氏度)下在三元GMO/TAG/水混合物中形成的低粘度HII中间相的微观结构和整体性质进行了比较。我们表征了Transcutol或乙醇作为无序诱导剂和表面活性剂流动性诱导剂的作用。所使用的技术包括流变学、差示扫描量热法(DSC)、广角和小角X射线散射(分别为WAXS和SAXS)、核磁共振(自扩散和(2)H NMR)以及傅里叶变换红外(FTIR)光谱学。加入Transcutol或乙醇都会在室温(高达30摄氏度)下诱导形成有序度较低的HII中间相,其域尺寸和晶格参数较小,类似于在更高温度(35 - 40摄氏度)下GMO/TAG/水混合物中发现的情况。基于我们的测量结果,我们认为Transcutol或乙醇会导致GMO头基脱水并增强GMO链的流动性。因此,这两种与GMO极性头基争夺水的小分子可能会增加圆柱形胶束的曲率,也可能会缩短其长度。这导致在室温(高达30摄氏度)下形成流体H(II)结构。这些相有可能是在35摄氏度以上发生的H(II)-L(2)转变的前奏。