Suppr超能文献

采用响应面法优化油棕纤维基活性炭对碱性染料的去除效果

Optimization of basic dye removal by oil palm fibre-based activated carbon using response surface methodology.

作者信息

Hameed B H, Tan I A W, Ahmad A L

机构信息

School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia.

出版信息

J Hazard Mater. 2008 Oct 30;158(2-3):324-32. doi: 10.1016/j.jhazmat.2008.01.088. Epub 2008 Feb 6.

Abstract

Oil palm fibre was used to prepare activated carbon using physiochemical activation method which consisted of potassium hydroxide (KOH) treatment and carbon dioxide (CO(2)) gasification. The effects of three preparation variables: the activation temperature, activation time and chemical impregnation (KOH:char) ratio on methylene blue (MB) uptake from aqueous solutions and activated carbon yield were investigated. Based on the central composite design (CCD), a quadratic model and a two factor interaction (2FI) model were respectively developed to correlate the preparation variables to the MB uptake and carbon yield. From the analysis of variance (ANOVA), the significant factors on each experimental design response were identified. The optimum activated carbon prepared from oil palm fibre was obtained by using activation temperature of 862 degrees C, activation time of 1h and chemical impregnation ratio of 3.1. The optimum activated carbon showed MB uptake of 203.83 mg/g and activated carbon yield of 16.50%. The equilibrium data for adsorption of MB on the optimum activated carbon were well represented by the Langmuir isotherm, giving maximum monolayer adsorption capacity as high as 400mg/g at 30 degrees C.

摘要

采用物理化学活化法,利用油棕纤维制备活性炭,该方法包括氢氧化钾(KOH)处理和二氧化碳(CO₂)气化。研究了三个制备变量,即活化温度、活化时间和化学浸渍(KOH:炭)比,对水溶液中甲基蓝(MB)吸附量和活性炭产率的影响。基于中心复合设计(CCD),分别建立了二次模型和双因素交互作用(2FI)模型,以关联制备变量与MB吸附量和炭产率。通过方差分析(ANOVA),确定了每个实验设计响应的显著因素。使用862℃的活化温度、1小时的活化时间和3.1的化学浸渍比,得到了由油棕纤维制备的最佳活性炭。最佳活性炭的MB吸附量为203.83mg/g,活性炭产率为16.50%。MB在最佳活性炭上的吸附平衡数据用Langmuir等温线很好地表示,在30℃时最大单层吸附容量高达400mg/g。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验