Suppr超能文献

水中的异裂键解离:为什么C4H9Cl很容易发生,而C3H9SiCl却不然?

Heterolytic bond dissociation in water: why is it so easy for C4H9Cl but not for C3H9SiCl?

作者信息

Su Peifeng, Song Lingchun, Wu Wei, Shaik Sason, Hiberty Philippe C

机构信息

Department of Chemistry, College of Chemistry and Chemical Engineering, and State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China.

出版信息

J Phys Chem A. 2008 Apr 3;112(13):2988-97. doi: 10.1021/jp8004647. Epub 2008 Mar 11.

Abstract

The recently developed (Song, L.; Wu, W.; Zhang, Q.; Shaik, S. J. Phys. Chem. A 2004, 108, 6017-6024) valence bond method coupled to a polarized continuum model (VBPCM) is used to address the long standing conundrum of the heterolytic dissociation of the C-Cl and Si-Cl bonds, respectively, in tertiary-butyl chloride and trimethylsilyl chloride in condensed phases. The method is used here to compare the bond dissociation in the gas phase and in aqueous solution. In addition to the ground state reaction profile, VB theory also provides the energies of the purely covalent and purely ionic VB structures as a function of the reaction coordinate. Accordingly, the C-Cl and Si-Cl bonds are shown to be of different natures. In the gas phase, the resonance energy arising from covalent-ionic mixing at equilibrium geometry amounts to 42 kcal/mol for tertiary-butyl chloride, whereas the same quantity for trimethylsilyl chloride is significantly higher at 62 kcal/mol. With such a high value, the root cause of the Si-Cl bonding is the covalent-ionic resonance energy, and this bond belongs to the category of charge-shift bonds (Shaik, S.; Danovich, D.; Silvi, B.; Lauvergnat, D.; Hiberty, P. C. Chem.- Eur. J. 2005, 11, 6358). This difference between the C-Cl and Si-Cl bonds carries over to the solvated phase and impacts the heterolytic cleavages of the two bonds. For both molecules, solvation lowers the ionic curve below the covalent one, and hence the bond dissociation in the solvent generates the two ions, Me3E+ Cl- (E = C, Si). In both cases, the root cause of the barrier is the loss of the covalent-ionic resonance energy. In the heterolysis reaction of Si-Cl, the covalent-ionic resonance energy remains large and fully contributes to the dissociation energy, thereby leading to a high barrier for heterolytic cleavage, and thus prohibiting the generation of ions. By contrast, the covalent-ionic resonance energy is smaller for the C-Cl bond and only partially contributes to the barrier for heterolysis, which is consequently small, leading readily to ions that are commonly observed in the classical SN1 mechanism. Thus, the reluctance of R3Si-X molecules to undergo heterolysis in condensed phases and more generally the rarity of free silicenium ions under these conditions are experimental manifestations of the charge-shift character of the Si-Cl bond.

摘要

最近开发的(宋,L.;吴,W.;张,Q.;沙伊克,S.《物理化学杂志A》2004年,108卷,6017 - 6024页)价键法与极化连续介质模型(VBPCM)相结合,用于解决叔丁基氯和三甲基氯硅烷在凝聚相中C - Cl键和Si - Cl键异裂解离这一长期存在的难题。该方法在此用于比较气相和水溶液中的键解离情况。除了基态反应剖面图外,VB理论还提供了纯共价和纯离子VB结构的能量作为反应坐标的函数。因此,C - Cl键和Si - Cl键显示出不同的性质。在气相中,叔丁基氯在平衡几何构型下由共价 - 离子混合产生的共振能为42千卡/摩尔,而三甲基氯硅烷的该值明显更高,为62千卡/摩尔。由于具有如此高的值,Si - Cl键合的根本原因是共价 - 离子共振能,并且该键属于电荷转移键的范畴(沙伊克,S.;达诺维奇,D.;西尔维,B.;劳弗格纳特,D.;希贝蒂,P. C.《化学 - 欧洲杂志》2005年,11卷,6358页)。C - Cl键和Si - Cl键之间的这种差异延续到溶剂化相,并影响这两种键的异裂。对于这两种分子,溶剂化使离子曲线低于共价曲线,因此溶剂中的键解离产生两个离子,Me3E + Cl-(E = C,Si)。在这两种情况下,势垒的根本原因是共价 - 离子共振能的损失。在Si - Cl的异裂反应中,共价 - 离子共振能仍然很大,并完全对解离能有贡献,从而导致异裂的高势垒,因此阻止了离子的产生。相比之下,C - Cl键的共价 - 离子共振能较小,仅部分对异裂势垒有贡献,因此势垒较小,容易产生经典SN1机制中常见的离子。因此,R3Si - X分子在凝聚相中不愿发生异裂,更普遍地说,在这些条件下自由硅鎓离子的稀少是Si - Cl键电荷转移特性的实验表现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验