Finocchietto Paola, Barreyro Fernando, Holod Silvia, Peralta Jorge, Franco María C, Méndez Carlos, Converso Daniela P, Estévez Alvaro, Carreras Maria C, Poderoso Juan J
Laboratory of Oxygen Metabolism, University Hospital, Buenos Aires, Argentina.
PLoS One. 2008 Mar 12;3(3):e1749. doi: 10.1371/journal.pone.0001749.
In the metabolic syndrome with hyperinsulinemia, mitochondrial inhibition facilitates muscle fat and glycogen accumulation and accelerates its progression. In the last decade, nitric oxide (NO) emerged as a typical mitochondrial modulator by reversibly inhibiting citochrome oxidase and oxygen utilization. We wondered whether insulin-operated signaling pathways modulate mitochondrial respiration via NO, to alternatively release complete glucose oxidation to CO(2) and H(2)O or to drive glucose storage to glycogen.
METHODOLOGY/PRINCIPAL FINDINGS: We illustrate here that NO produced by translocated nNOS (mtNOS) is the insulin-signaling molecule that controls mitochondrial oxygen utilization. We evoke a hyperinsulinemic-normoglycemic non-invasive clamp by subcutaneously injecting adult male rats with long-lasting human insulin glargine that remains stable in plasma by several hours. At a precise concentration, insulin increased phospho-Akt2 that translocates to mitochondria and determines in situ phosphorylation and substantial cooperative mtNOS activation (+4-8 fold, P<.05), high NO, and a lowering of mitochondrial oxygen uptake and resting metabolic rate (-25 to -60%, P<.05). Comparing in vivo insulin metabolic effects on gastrocnemius muscles by direct electroporation of siRNA nNOS or empty vector in the two legs of the same animal, confirmed that in the silenced muscles disrupted mtNOS allows higher oxygen uptake and complete (U-(14)C)-glucose utilization respect to normal mtNOS in the vector-treated ones (respectively 37+/-3 vs 10+/-1 micromolO(2)/h.g tissue and 13+/-1 vs 7.2+/-1 micromol (3)H(2)O/h.g tissue, P<.05), which reciprocally restricted glycogen-synthesis by a half.
CONCLUSIONS/SIGNIFICANCE: These evidences show that after energy replenishment, insulin depresses mitochondrial respiration in skeletal muscle via NO which permits substrates to be deposited as macromolecules; at discrete hyperinsulinemia, persistent mtNOS activation could contribute to mitochondrial dysfunction with insulin resistance and obesity and therefore, to the progression of the metabolic syndrome.
在伴有高胰岛素血症的代谢综合征中,线粒体抑制促进肌肉脂肪和糖原积累并加速其进展。在过去十年中,一氧化氮(NO)作为一种典型的线粒体调节剂出现,它通过可逆地抑制细胞色素氧化酶和氧利用来发挥作用。我们想知道胰岛素介导的信号通路是否通过NO调节线粒体呼吸,从而将葡萄糖完全氧化为CO₂和H₂O,或者驱动葡萄糖储存为糖原。
方法/主要发现:我们在此表明,转位的神经元型一氧化氮合酶(mtNOS)产生的NO是控制线粒体氧利用的胰岛素信号分子。我们通过给成年雄性大鼠皮下注射长效甘精胰岛素来诱发高胰岛素血症 - 正常血糖的非侵入性钳夹,该胰岛素在血浆中可稳定存在数小时。在精确浓度下,胰岛素增加磷酸化Akt2,其转位至线粒体并决定原位磷酸化以及mtNOS的显著协同激活(增加4 - 8倍,P <.05),高NO水平,以及线粒体氧摄取和静息代谢率降低(-25%至-60%,P <.05)。通过在同一只动物的两条腿上直接电穿孔siRNA nNOS或空载体来比较体内胰岛素对腓肠肌的代谢作用,证实与载体处理组中正常mtNOS的肌肉相比,沉默肌肉中被破坏的mtNOS允许更高的氧摄取和完全的(U - ¹⁴C)葡萄糖利用(分别为37±3 vs 10±1 μmolO₂/h·g组织和13±1 vs 7.2±1 μmol ³H₂O/h·g组织,P <.05),而这反过来使糖原合成减少一半。
结论/意义:这些证据表明,在能量补充后,胰岛素通过NO抑制骨骼肌中的线粒体呼吸,从而使底物能够以大分子形式沉积;在离散的高胰岛素血症状态下,持续的mtNOS激活可能导致线粒体功能障碍以及胰岛素抵抗和肥胖,进而导致代谢综合征的进展。