Mulholland Patrick J, Helton Ashley M, Poole Geoffrey C, Hall Robert O, Hamilton Stephen K, Peterson Bruce J, Tank Jennifer L, Ashkenas Linda R, Cooper Lee W, Dahm Clifford N, Dodds Walter K, Findlay Stuart E G, Gregory Stanley V, Grimm Nancy B, Johnson Sherri L, McDowell William H, Meyer Judy L, Valett H Maurice, Webster Jackson R, Arango Clay P, Beaulieu Jake J, Bernot Melody J, Burgin Amy J, Crenshaw Chelsea L, Johnson Laura T, Niederlehner B R, O'Brien Jonathan M, Potter Jody D, Sheibley Richard W, Sobota Daniel J, Thomas Suzanne M
Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
Nature. 2008 Mar 13;452(7184):202-5. doi: 10.1038/nature06686.
Anthropogenic addition of bioavailable nitrogen to the biosphere is increasing and terrestrial ecosystems are becoming increasingly nitrogen-saturated, causing more bioavailable nitrogen to enter groundwater and surface waters. Large-scale nitrogen budgets show that an average of about 20-25 per cent of the nitrogen added to the biosphere is exported from rivers to the ocean or inland basins, indicating that substantial sinks for nitrogen must exist in the landscape. Streams and rivers may themselves be important sinks for bioavailable nitrogen owing to their hydrological connections with terrestrial systems, high rates of biological activity, and streambed sediment environments that favour microbial denitrification. Here we present data from nitrogen stable isotope tracer experiments across 72 streams and 8 regions representing several biomes. We show that total biotic uptake and denitrification of nitrate increase with stream nitrate concentration, but that the efficiency of biotic uptake and denitrification declines as concentration increases, reducing the proportion of in-stream nitrate that is removed from transport. Our data suggest that the total uptake of nitrate is related to ecosystem photosynthesis and that denitrification is related to ecosystem respiration. In addition, we use a stream network model to demonstrate that excess nitrate in streams elicits a disproportionate increase in the fraction of nitrate that is exported to receiving waters and reduces the relative role of small versus large streams as nitrate sinks.
人为向生物圈添加生物可利用氮的量正在增加,陆地生态系统正变得越来越氮饱和,导致更多生物可利用氮进入地下水和地表水。大规模氮预算表明,添加到生物圈的氮平均约有20% - 25%从河流输出到海洋或内陆盆地,这表明景观中必定存在大量氮汇。溪流和河流本身可能是生物可利用氮的重要汇,这归因于它们与陆地系统的水文联系、高生物活性速率以及有利于微生物反硝化作用的河床沉积物环境。在此,我们展示了来自跨越72条溪流和8个代表多个生物群落区域的氮稳定同位素示踪实验的数据。我们表明,硝酸盐的总生物吸收和反硝化作用随溪流硝酸盐浓度增加而增加,但生物吸收和反硝化作用的效率随着浓度增加而下降,从而减少了从径流中去除的溪流硝酸盐比例。我们的数据表明,硝酸盐的总吸收与生态系统光合作用有关,反硝化作用与生态系统呼吸作用有关。此外,我们使用一个溪流网络模型来证明,溪流中过量的硝酸盐会导致输出到接纳水体的硝酸盐比例出现不成比例的增加,并降低小溪流与大溪流作为硝酸盐汇的相对作用。