Suppr超能文献

基于递归图的结构和量化预测心房颤动的终止

Predicting termination of atrial fibrillation based on the structure and quantification of the recurrence plot.

作者信息

Sun Rongrong, Wang Yuanyuan

机构信息

Department of Electronic Engineering, Fudan University, 220 Handan Road, Shanghai 200433, China.

出版信息

Med Eng Phys. 2008 Nov;30(9):1105-11. doi: 10.1016/j.medengphy.2008.01.008. Epub 2008 Mar 17.

Abstract

Predicting the spontaneous termination of the atrial fibrillation (AF) leads to not only better understanding of mechanisms of the arrhythmia but also the improved treatment of the sustained AF. A novel method is proposed to characterize the AF based on structure and the quantification of the recurrence plot (RP) to predict the termination of the AF. The RP of the electrocardiogram (ECG) signal is firstly obtained and eleven features are extracted to characterize its three basic patterns. Then the sequential forward search (SFS) algorithm and Davies-Bouldin criterion are utilized to select the feature subset which can predict the AF termination effectively. Finally, the multilayer perceptron (MLP) neural network is applied to predict the AF termination. An AF database which includes one training set and two testing sets (A and B) of Holter ECG recordings is studied. Experiment results show that 97% of testing set A and 95% of testing set B are correctly classified. It demonstrates that this algorithm has the ability to predict the spontaneous termination of the AF effectively.

摘要

预测心房颤动(AF)的自发终止不仅有助于更好地理解心律失常的机制,还能改善持续性AF的治疗。提出了一种基于结构和递归图(RP)量化来表征AF的新方法,以预测AF的终止。首先获取心电图(ECG)信号的RP,并提取11个特征来表征其三种基本模式。然后利用顺序前向搜索(SFS)算法和戴维斯-布尔丁准则来选择能够有效预测AF终止的特征子集。最后,应用多层感知器(MLP)神经网络来预测AF的终止。研究了一个包含动态心电图记录的一个训练集和两个测试集(A和B)的AF数据库。实验结果表明,测试集A的97%和测试集B的95%被正确分类。这表明该算法具有有效预测AF自发终止的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验