Isobe Masaharu
Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Feb;77(2 Pt 1):021201. doi: 10.1103/PhysRevE.77.021201. Epub 2008 Feb 7.
Alder and Wainwright discovered the slow power decay t(-d/2) (d is dimension) of the velocity autocorrelation function in moderately dense hard-sphere fluids using the event-driven molecular dynamics simulations. In the two-dimensional (2D) case, the diffusion coefficient derived using the time correlation expression in linear response theory shows logarithmic divergence, which is called the "2D long-time-tail problem." We reexamined this problem to perform a large-scale, long-time simulation with 1x10(6) hard disks using a modern efficient algorithm and found that the decay of the long tail in moderately dense fluids is slightly faster than the power decay (1/t) . We also compared our numerical data with the prediction of the self-consistent mode-coupling theory in the long-time limit [~1/(t sqrt[ln t])] .
奥尔德和温赖特通过事件驱动分子动力学模拟,在中等密度的硬球流体中发现了速度自相关函数的缓慢幂律衰减t^(-d/2)(d为维度)。在二维(2D)情况下,使用线性响应理论中的时间相关表达式导出的扩散系数呈现对数发散,这被称为“二维长时间尾问题”。我们重新审视了这个问题,使用现代高效算法对1×10^6个硬盘进行了大规模、长时间模拟,发现中等密度流体中长尾的衰减略快于幂律衰减(1/t)。我们还将数值数据与长时间极限下自洽模耦合理论的预测(~1/(t√[ln t]))进行了比较。