Chen Maoyin, Shang Yun, Zou Yong, Kurths Jürgen
Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Feb;77(2 Pt 2):027101. doi: 10.1103/PhysRevE.77.027101. Epub 2008 Feb 11.
We propose a dynamical gradient network approach to consider the synchronization in the Kuramoto model. Our scheme to adaptively adjust couplings is based on the dynamical gradient networks, where the number of links in each time interval is the same as the number of oscillators, but the links in different time intervals are also different. The gradient network in the (n+1)th time interval is decided by the oscillator dynamics in the n th time interval. According to the gradient network in the (n+1)th time interval, only one inlink's coupling for each oscillator is adjusted by a small incremental coupling. During the transition to synchronization, the intensities for all oscillators are identical. Direct numerical simulations fully verify that the synchronization in the Kuramoto model is realized effectively, even if there exist delayed couplings and external noise.
我们提出一种动态梯度网络方法来考虑Kuramoto模型中的同步问题。我们用于自适应调整耦合的方案基于动态梯度网络,其中每个时间间隔内的连接数与振子数相同,但不同时间间隔内的连接也不同。第(n + 1)个时间间隔内的梯度网络由第n个时间间隔内的振子动力学决定。根据第(n + 1)个时间间隔内的梯度网络,每个振子只有一个入链路的耦合通过一个小的增量耦合进行调整。在向同步过渡期间,所有振子的强度是相同的。直接数值模拟充分验证了即使存在延迟耦合和外部噪声,Kuramoto模型中的同步也能有效实现。