Steckman G J, Pu A, Psaltis D
Appl Opt. 2001 Jul 10;40(20):3387-94. doi: 10.1364/ao.40.003387.
The storage density of shift-multiplexed holographic memory is calculated and compared with experimentally achieved densities by use of photorefractive and write-once materials. We consider holographic selectivity as well as the recording material's dynamic range (M/#) and required diffraction efficiencies in formulating the calculations of storage densities, thereby taking into account all major factors limiting the raw storage density achievable with shift-multiplexed holographic storage systems. We show that the M/# is the key factor in limiting storage densities rather than the recording material's thickness for organic materials in which the scatter is relatively high. A storage density of 100 bits/mum(2) is experimentally demonstrated by use of a 1-mm-thick LiNbO(3) crystal as the recording medium.