Smith Eric
Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA.
J Theor Biol. 2008 May 21;252(2):185-97. doi: 10.1016/j.jtbi.2008.02.010. Epub 2008 Feb 16.
This is the first of three papers analyzing the representation of information in the biosphere, and the energetic constraints limiting the imposition or maintenance of that information. Biological information is inherently a chemical property, but is equally an aspect of control flow and a result of processes equivalent to computation. The current paper develops the constraints on a theory of biological information capable of incorporating these three characterizations and their quantitative consequences. The paper illustrates the need for a theory linking energy and information by considering the problem of existence and reslience of the biosphere, and presents empirical evidence from growth and development at the organismal level suggesting that the theory developed will capture relevant constraints on real systems. The main result of the paper is that the limits on the minimal energetic cost of information flow will be tractable and universal whereas the assembly of more literal process models into a system-level description often is not. The second paper in the series then goes on to construct reversible models of energy and information flow in chemistry which achieve the idealized limits, and the third paper relates these to fundamental operations of computation.
这是分析生物圈中信息表示以及限制该信息施加或维持的能量约束的三篇论文中的第一篇。生物信息本质上是一种化学属性,但同样也是控制流的一个方面,并且是等同于计算过程的结果。本文阐述了对一种能够纳入这三种特征及其定量结果的生物信息理论的约束。本文通过考虑生物圈的存在和复原力问题,说明了建立一种将能量与信息联系起来的理论的必要性,并提供了来自生物体水平生长和发育的经验证据,表明所提出的理论将捕捉到对真实系统的相关约束。本文的主要结果是,信息流最小能量成本的限制将是易于处理且通用的,而将更具体的过程模型组装成系统级描述通常并非如此。该系列的第二篇论文接着构建了化学中能量和信息流的可逆模型,这些模型达到了理想化的限制,第三篇论文则将这些模型与计算的基本操作联系起来。