Suppr超能文献

腺相关病毒衣壳组装中的表面环动力学

Surface loop dynamics in adeno-associated virus capsid assembly.

作者信息

DiPrimio Nina, Asokan Aravind, Govindasamy Lakshmanan, Agbandje-McKenna Mavis, Samulski R Jude

机构信息

Gene Therapy Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7352, USA.

出版信息

J Virol. 2008 Jun;82(11):5178-89. doi: 10.1128/JVI.02721-07. Epub 2008 Mar 26.

Abstract

The HI loop is a prominent domain on the adeno-associated virus (AAV) capsid surface that extends from each viral protein (VP) subunit overlapping the neighboring fivefold VP. Despite the highly conserved nature of the residues at the fivefold pore, the HI loops surrounding this critical region vary significantly in amino acid sequence between the AAV serotypes. In order to understand the role of this unique capsid domain, we ablated side chain interactions between the HI loop and the underlying EF loop in the neighboring VP subunit by generating a collection of deletion, insertion, and substitution mutants. A mutant lacking the HI loop was unable to assemble particles, while a substitution mutant (10 glycine residues) assembled particles but was unable to package viral genomes. Substitution mutants carrying corresponding regions from AAV1, AAV4, AAV5, and AAV8 yielded (i) particles with titers and infectivity identical to those of AAV2 (AAV2 HI1 and HI8), (ii) particles with a decreased virus titer (1 log) but normal infectivity (HI4), and (iii) particles that synthesized VPs but were unable to assemble into intact capsids (HI5). AAV5 HI is shorter than all other HI loops by one amino acid. Replacing the missing residue (threonine) in AAV2 HI5 resulted in a moderate particle assembly rescue. In addition, we replaced the HI loop with peptides varying in length and amino acid sequence. This region tolerated seven-amino-acid peptide substitutions unless they spanned a conserved phenylalanine at amino acid position 661. Mutation of this highly conserved phenylalanine to a glycine resulted in a modest decrease in virus titer but a substantial decrease (1 log order) in infectivity. Subsequently, confocal studies revealed that AAV2 F661G is incapable of efficiently completing a key step in the infectious pathway nuclear entry, hinting at a possible perturbation of VP1 phospholipase activity. Molecular modeling studies with the F661G mutant suggest that disruption of interactions between F661 and an underlying P373 residue in the EF loop of the neighboring subunit might adversely affect incorporation of the VP1 subunit at the fivefold axis. Western blot analysis confirmed inefficient incorporation of VP1, as well as a proteolytically processed VP1 subunit that could account for the markedly reduced infectivity. In summary, our studies show that the HI loop, while flexible in amino acid sequence, is critical for AAV capsid assembly, proper VP1 subunit incorporation, and viral genome packaging, all of which implies a potential role for this unique surface domain in viral infectivity.

摘要

HI环是腺相关病毒(AAV)衣壳表面的一个突出结构域,它从每个病毒蛋白(VP)亚基延伸出来,与相邻的五聚体VP重叠。尽管五聚体孔处的残基具有高度保守的性质,但围绕这一关键区域的HI环在AAV血清型之间的氨基酸序列差异很大。为了了解这个独特衣壳结构域的作用,我们通过生成一系列缺失、插入和替换突变体,消除了HI环与相邻VP亚基中潜在的EF环之间的侧链相互作用。缺失HI环的突变体无法组装颗粒,而一个替换突变体(10个甘氨酸残基)能够组装颗粒,但无法包装病毒基因组。携带来自AAV1、AAV4、AAV5和AAV8相应区域的替换突变体产生了:(i)滴度和感染性与AAV2相同的颗粒(AAV2 HI1和HI8),(ii)病毒滴度降低(1个对数)但感染性正常的颗粒(HI4),以及(iii)合成了VP但无法组装成完整衣壳的颗粒(HI5)。AAV5 HI比所有其他HI环短一个氨基酸。在AAV2 HI5中替换缺失的残基(苏氨酸)导致颗粒组装得到适度拯救。此外,我们用长度和氨基酸序列不同的肽替换了HI环。该区域能够耐受七个氨基酸的肽替换,除非它们跨越氨基酸位置661处的保守苯丙氨酸。将这个高度保守的苯丙氨酸突变为甘氨酸导致病毒滴度适度下降,但感染性大幅下降(1个对数级)。随后,共聚焦研究表明,AAV2 F661G无法有效地完成感染途径核进入中的关键步骤,这暗示了VP1磷脂酶活性可能受到干扰。对F661G突变体的分子模拟研究表明,F661与相邻亚基EF环中潜在的P373残基之间相互作用的破坏可能会对VP1亚基在五聚体轴处的掺入产生不利影响。蛋白质印迹分析证实了VP1的低效掺入,以及一个经过蛋白水解处理的VP1亚基,这可以解释感染性的显著降低。总之,我们的研究表明,HI环虽然在氨基酸序列上具有灵活性,但对于AAV衣壳组装、适当的VP1亚基掺入和病毒基因组包装至关重要,所有这些都暗示了这个独特表面结构域在病毒感染性中的潜在作用。

相似文献

1
Surface loop dynamics in adeno-associated virus capsid assembly.
J Virol. 2008 Jun;82(11):5178-89. doi: 10.1128/JVI.02721-07. Epub 2008 Mar 26.
4
Structural and Biophysical Analysis of Adeno-Associated Virus Serotype 2 Capsid Assembly Variants.
J Virol. 2023 Jul 27;97(7):e0177222. doi: 10.1128/jvi.01772-22. Epub 2023 Jun 13.
6
Comparative analysis of adeno-associated virus capsid stability and dynamics.
J Virol. 2013 Dec;87(24):13150-60. doi: 10.1128/JVI.01415-13. Epub 2013 Sep 25.
8
The assembly-activating protein promotes capsid assembly of different adeno-associated virus serotypes.
J Virol. 2011 Dec;85(23):12686-97. doi: 10.1128/JVI.05359-11. Epub 2011 Sep 14.
9
Proteolytic mapping of the adeno-associated virus capsid.
Mol Ther. 2006 Dec;14(6):809-21. doi: 10.1016/j.ymthe.2006.08.1222. Epub 2006 Sep 27.

引用本文的文献

1
Birds of a feather flock together: structural characterization of red-crowned crane and turkey aveparvoviruses.
J Virol. 2025 Jul 22;99(7):e0011025. doi: 10.1128/jvi.00110-25. Epub 2025 Jul 3.
2
Structural studies of Parvoviridae capsid assembly and evolution: implications for novel AAV vector design.
Front Artif Intell. 2025 Apr 2;8:1559461. doi: 10.3389/frai.2025.1559461. eCollection 2025.
3
Multiparametric domain insertional profiling of adeno-associated virus VP1.
Mol Ther Methods Clin Dev. 2023 Oct 26;31:101143. doi: 10.1016/j.omtm.2023.101143. eCollection 2023 Dec 14.
4
Structure-guided AAV capsid evolution strategies for enhanced CNS gene delivery.
Nat Protoc. 2023 Nov;18(11):3413-3459. doi: 10.1038/s41596-023-00875-y. Epub 2023 Sep 21.
5
Characterization of the GBoV1 Capsid and Its Antibody Interactions.
Viruses. 2021 Feb 20;13(2):330. doi: 10.3390/v13020330.
6
Evaluating Local and Directional Resolution of Cryo-EM Density Maps.
Methods Mol Biol. 2021;2215:161-187. doi: 10.1007/978-1-0716-0966-8_8.
7
Evolution of dependoparvoviruses across geological timescales-implications for design of AAV-based gene therapy vectors.
Virus Evol. 2020 May 22;6(2):veaa043. doi: 10.1093/ve/veaa043. eCollection 2020 Jul.
8
New Directions in Pulmonary Gene Therapy.
Hum Gene Ther. 2020 Sep;31(17-18):921-939. doi: 10.1089/hum.2020.166.
10
Universal Method for the Purification of Recombinant AAV Vectors of Differing Serotypes.
Mol Ther Methods Clin Dev. 2017 Dec 22;9:33-46. doi: 10.1016/j.omtm.2017.12.004. eCollection 2018 Jun 15.

本文引用的文献

1
Structure of adeno-associated virus serotype 8, a gene therapy vector.
J Virol. 2007 Nov;81(22):12260-71. doi: 10.1128/JVI.01304-07. Epub 2007 Aug 29.
2
Characterization of the relationship of AAV capsid domain swapping to liver transduction efficiency.
Mol Ther. 2007 Nov;15(11):1955-62. doi: 10.1038/sj.mt.6300293. Epub 2007 Aug 28.
4
Immune responses to AAV capsid: are mice not humans after all?
Mol Ther. 2007 Apr;15(4):649-50. doi: 10.1038/sj.mt.6300123.
5
Production, purification and preliminary X-ray crystallographic studies of adeno-associated virus serotype 1.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006 Dec 1;62(Pt 12):1271-4. doi: 10.1107/S1744309106048184. Epub 2006 Nov 30.
7
Structurally mapping the diverse phenotype of adeno-associated virus serotype 4.
J Virol. 2006 Dec;80(23):11556-70. doi: 10.1128/JVI.01536-06. Epub 2006 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验