Suppr超能文献

可激发介质范式的分岔分析:环上的稳定动态交替是否可能?

Bifurcation analysis of a normal form for excitable media: are stable dynamical alternans on a ring possible?

作者信息

Gottwald Georg A

机构信息

School of Mathematics and Statistics and Centre for Mathematical Biology, University of Sydney, Sydney, NSW 2006, Australia.

出版信息

Chaos. 2008 Mar;18(1):013129. doi: 10.1063/1.2890430.

Abstract

We present a bifurcation analysis of a normal form for traveling waves in one-dimensional excitable media. The normal form that has been recently proposed on phenomenological grounds is given in the form of a differential delay equation. The normal form exhibits a symmetry-preserving Hopf bifurcation that may coalesce with a saddle node in a Bogdanov-Takens point, and a symmetry-breaking spatially inhomogeneous pitchfork bifurcation. We study here the Hopf bifurcation for the propagation of a single pulse in a ring by means of a center manifold reduction, and for a wave train by means of a multiscale analysis leading to a real Ginzburg-Landau equation as the corresponding amplitude equation. Both the center manifold reduction and the multiscale analysis show that the Hopf bifurcation is always subcritical independent of the parameters. This may have links to cardiac alternans, which have so far been believed to be stable oscillations emanating from a supercritical bifurcation. We discuss the implications for cardiac alternans and revisit the instability in some excitable media where the oscillations had been believed to be stable. In particular, we show that our condition for the onset of the Hopf bifurcation coincides with the well known restitution condition for cardiac alternans.

摘要

我们给出了一维可激发介质中行波范式的分岔分析。最近基于现象学理由提出的范式以微分延迟方程的形式给出。该范式展现出一个保对称的霍普夫分岔,它可能在一个博格达诺夫 - 塔肯斯点与一个鞍结合并,以及一个空间非均匀的破对称叉形分岔。我们在此通过中心流形约化研究单个脉冲在环中传播时的霍普夫分岔,以及通过多尺度分析研究波列的霍普夫分岔,多尺度分析导致一个实金兹堡 - 朗道方程作为相应的振幅方程。中心流形约化和多尺度分析都表明,霍普夫分岔总是次临界的,与参数无关。这可能与心脏交替现象有关,到目前为止,心脏交替现象一直被认为是由超临界分岔产生的稳定振荡。我们讨论了对心脏交替现象的影响,并重新审视了一些可激发介质中的不稳定性,在这些介质中,振荡曾被认为是稳定的。特别地,我们表明我们的霍普夫分岔起始条件与心脏交替现象中著名的恢复条件一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验