Durham Joseph, Moehlis Jeff
Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA.
Chaos. 2008 Mar;18(1):015110. doi: 10.1063/1.2804554.
We present a control mechanism for tuning a fast-slow dynamical system undergoing a supercritical Hopf bifurcation to be in the canard regime, the tiny parameter window between small and large periodic behavior. Our control strategy uses continuous feedback control via a slow control variable to cause the system to drift on average toward canard orbits. We apply this to tune the FitzHugh-Nagumo model to produce maximal canard orbits. When the controller is improperly configured, periodic or chaotic mixed-mode oscillations are found. We also investigate the effects of noise on this control mechanism. Finally, we demonstrate that a sensor tuned in this way to operate near the canard regime can detect tiny changes in system parameters.
我们提出了一种控制机制,用于调整经历超临界霍普夫分岔的快慢动力系统,使其处于鸭轨 regime,即小周期行为和大周期行为之间的微小参数窗口。我们的控制策略通过一个慢控制变量使用连续反馈控制,使系统平均朝着鸭轨漂移。我们将此应用于调整菲茨休 - 纳古莫模型以产生最大鸭轨。当控制器配置不当时,会出现周期性或混沌混合模式振荡。我们还研究了噪声对这种控制机制的影响。最后,我们证明以这种方式调整以在鸭轨 regime 附近运行的传感器可以检测系统参数的微小变化。