Suppr超能文献

涉及免疫球蛋白或MYC基因座的继发性基因组重排在超二倍体和非超二倍体骨髓瘤肿瘤中的发生率相似。

Secondary genomic rearrangements involving immunoglobulin or MYC loci show similar prevalences in hyperdiploid and nonhyperdiploid myeloma tumors.

作者信息

Gabrea Ana, Martelli Maria Luisa, Qi Ying, Roschke Anna, Barlogie Bart, Shaughnessy John D, Sawyer Jeffrey R, Kuehl W Michael

机构信息

Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.

出版信息

Genes Chromosomes Cancer. 2008 Jul;47(7):573-90. doi: 10.1002/gcc.20563.

Abstract

The pathogenesis of multiple myeloma (MM) is thought to involve at least two pathways, which generate hyperdiploid (HRD) or nonhyperdiploid (NHRD) tumors, respectively. Apart from chromosome content, the two pathways are distinguished by five primary immunoglobulin heavy chain (IGH) rearrangements (4p16, FGFR3, and MMSET; 6p21, CCND3; 11q13, CCND1; 16q23, MAF; 20q12, MAFB) that are present mainly in NHRD tumors. To determine the prevalence and structures of IGH, immunoglobulin (IG) light chain, and MYC genomic rearrangements in MM, we have done comprehensive metaphase fluorescent in situ hybridization analyses on 48 advanced MM tumors and 47 MM cell lines. As expected, the prevalence of the five primary IGH rearrangements was nearly 70% in NHRD tumors, but only 12% in HRD tumors. However, IGH rearrangements not involving one of the five primary partners, and IG light chain rearrangements, have a similar prevalence in HRD and NHRD tumors. In addition, MYC rearrangements, which are thought to be late progression events that sometimes do not involve an IG heavy or light chain locus, also have a similar prevalence in HRD and NHRD tumors. In contrast to the primary IGH rearrangements, which usually are simple balanced translocations, these other IG rearrangements usually have complex structures, as previously described for MYC rearrangements in MM. We conclude that IG light chain and MYC rearrangements, as well as secondary IGH rearrangements, make similar contributions to the progression of both HRD and NHRD MM tumors.

摘要

多发性骨髓瘤(MM)的发病机制被认为至少涉及两条途径,分别产生超二倍体(HRD)或非超二倍体(NHRD)肿瘤。除了染色体含量外,这两条途径的区别在于五种主要的免疫球蛋白重链(IGH)重排(4p16、FGFR3和MMSET;6p21、CCND3;11q13、CCND1;16q23、MAF;20q12、MAFB),这些重排主要存在于NHRD肿瘤中。为了确定MM中IGH、免疫球蛋白(IG)轻链和MYC基因组重排的发生率及结构,我们对48例晚期MM肿瘤和47株MM细胞系进行了全面的中期荧光原位杂交分析。正如预期的那样,五种主要IGH重排在NHRD肿瘤中的发生率接近70%,而在HRD肿瘤中仅为12%。然而,不涉及五种主要伙伴之一的IGH重排以及IG轻链重排在HRD和NHRD肿瘤中的发生率相似。此外,MYC重排被认为是晚期进展事件,有时不涉及IG重链或轻链基因座,在HRD和NHRD肿瘤中的发生率也相似。与通常为简单平衡易位的主要IGH重排不同,这些其他IG重排通常具有复杂的结构,正如先前在MM的MYC重排中所描述的那样。我们得出结论,IG轻链和MYC重排以及继发性IGH重排在HRD和NHRD MM肿瘤的进展中起相似的作用。

相似文献

2
Characterization of MYC translocations in multiple myeloma cell lines.
J Natl Cancer Inst Monogr. 2008(39):25-31. doi: 10.1093/jncimonographs/lgn011.
3
Distinguishing primary and secondary translocations in multiple myeloma.
DNA Repair (Amst). 2006 Sep 8;5(9-10):1225-33. doi: 10.1016/j.dnarep.2006.05.012. Epub 2006 Jul 10.
8
Rearrangements of the c-myc oncogene are present in 15% of primary human multiple myeloma tumors.
Blood. 2001 Nov 15;98(10):3082-6. doi: 10.1182/blood.v98.10.3082.
9
The recurrent IgH translocations are highly associated with nonhyperdiploid variant multiple myeloma.
Blood. 2003 Oct 1;102(7):2562-7. doi: 10.1182/blood-2003-02-0493. Epub 2003 Jun 12.

引用本文的文献

1
MYC alterations in multiple myeloma: Genetic insights and prognostic impact.
Neoplasia. 2025 Aug;66:101177. doi: 10.1016/j.neo.2025.101177. Epub 2025 May 14.
2
The Genetic and Molecular Drivers of Multiple Myeloma: Current Insights, Clinical Implications, and the Path Forward.
Pharmgenomics Pers Med. 2024 Dec 21;17:573-609. doi: 10.2147/PGPM.S350238. eCollection 2024.
3
Structural Optimization and Anticancer Activity of Polo-like Kinase 1 (Plk1) Polo-Box Domain (PBD) Inhibitors and Their Prodrugs.
ACS Pharmacol Transl Sci. 2023 Feb 20;6(3):422-446. doi: 10.1021/acsptsci.2c00250. eCollection 2023 Mar 10.
4
6
Implications of MYC Rearrangements in Newly Diagnosed Multiple Myeloma.
Clin Cancer Res. 2020 Dec 15;26(24):6581-6588. doi: 10.1158/1078-0432.CCR-20-2283. Epub 2020 Oct 2.
7
Microhomology-mediated end joining drives complex rearrangements and overexpression of and in multiple myeloma.
Haematologica. 2020 Apr;105(4):1055-1066. doi: 10.3324/haematol.2019.217927. Epub 2019 Jun 20.
9
Plasmablastic Lymphoma in an Immunocompetent Patient with MDS/MPN with Ring Sideroblasts and Thrombocytosis-A Case Report.
Case Rep Hematol. 2018 Nov 4;2018:2525070. doi: 10.1155/2018/2525070. eCollection 2018.
10
MAFb protein confers intrinsic resistance to proteasome inhibitors in multiple myeloma.
BMC Cancer. 2018 Jul 6;18(1):724. doi: 10.1186/s12885-018-4602-4.

本文引用的文献

1
Characterization of MYC translocations in multiple myeloma cell lines.
J Natl Cancer Inst Monogr. 2008(39):25-31. doi: 10.1093/jncimonographs/lgn011.
2
Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma.
Cancer Cell. 2007 Aug;12(2):131-44. doi: 10.1016/j.ccr.2007.07.003.
4
Molecular dissection of hyperdiploid multiple myeloma by gene expression profiling.
Cancer Res. 2007 Apr 1;67(7):2982-9. doi: 10.1158/0008-5472.CAN-06-4046.
5
Analysis of genetic abnormalities provides insights into genetic evolution of hyperdiploid myeloma.
Genes Chromosomes Cancer. 2006 Dec;45(12):1111-20. doi: 10.1002/gcc.20375.
6
Distinguishing primary and secondary translocations in multiple myeloma.
DNA Repair (Amst). 2006 Sep 8;5(9-10):1225-33. doi: 10.1016/j.dnarep.2006.05.012. Epub 2006 Jul 10.
7
Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma.
Blood. 2005 Jul 1;106(1):296-303. doi: 10.1182/blood-2005-01-0034. Epub 2005 Mar 8.
8
Genetics and cytogenetics of multiple myeloma: a workshop report.
Cancer Res. 2004 Feb 15;64(4):1546-58. doi: 10.1158/0008-5472.can-03-2876.
10
The recurrent IgH translocations are highly associated with nonhyperdiploid variant multiple myeloma.
Blood. 2003 Oct 1;102(7):2562-7. doi: 10.1182/blood-2003-02-0493. Epub 2003 Jun 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验