Suppr超能文献

采用荧光检测微芯片电泳法分析人血管内皮(ECV-304)细胞中的氨基酸。

Analysis of amino acids in human vascular endothelial (ECV-304) cells by microchip electrophoresis with fluorescence detection.

作者信息

Shi Baoxian, Huang Weihua, Cheng Jieke

机构信息

College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.

出版信息

J Sep Sci. 2008 Apr;31(6-7):1144-50. doi: 10.1002/jssc.200700529.

Abstract

A rapid and sensitive method was developed for the analysis of amino acids by microchip electrophoresis with Hg-lamp excitation fluorescence detection. Fluorescein-isothiocyanate (FITC) was chosen to estimate the sensitivity of this system, and the detection limit (S/N = 3) with FITC was 1.7 nM, which showed that the system was sensitive as well as simple. Two derivatizing agents, FITC and ortho-phthalaldehyde (OPA) were employed to label amino acids and were compared in the same fluorescence detection system with an Hg lamp as the excitation source. The separation parameters were optimized in detail. Optimum separation of OPA-labeled amino acids was obtained in less than 200 s with 20 mM borate buffer (pH 9.0) containing 20% acetonitrile and 10 mM beta-cyclodextrin. Detection limits for amino acids (alanine (Ala), taurine (Tau), glycine (Gly), glutamic acid (Glu), and aspartic acid (Asp)) of 0.38-1.0 muM were achieved. The method was successfully applied to analysis of amino acids in human vascular endothelial cells (ECV-304). The average amount of amino acids in single ECV-304 cells is estimated to be 5.84 fmol for Ala, 2.78 fmol for Tau, 1.15 fmol for Gly, 3.10 fmol for Glu, and 1.30 fmol for Asp.

摘要

开发了一种快速灵敏的方法,用于通过汞灯激发荧光检测的微芯片电泳分析氨基酸。选择异硫氰酸荧光素(FITC)来评估该系统的灵敏度,FITC的检测限(S/N = 3)为1.7 nM,这表明该系统既灵敏又简单。使用两种衍生剂FITC和邻苯二甲醛(OPA)对氨基酸进行标记,并在以汞灯为激发源的同一荧光检测系统中进行比较。详细优化了分离参数。在含有20%乙腈和10 mMβ-环糊精的20 mM硼酸盐缓冲液(pH 9.0)中,不到200秒即可实现OPA标记氨基酸的最佳分离。氨基酸(丙氨酸(Ala)、牛磺酸(Tau)、甘氨酸(Gly)、谷氨酸(Glu)和天冬氨酸(Asp))的检测限达到0.38 - 1.0 μM。该方法成功应用于人类血管内皮细胞(ECV - 304)中氨基酸的分析。单个ECV - 304细胞中氨基酸的平均含量估计为:Ala为5.84 fmol,Tau为2.78 fmol,Gly为1.15 fmol,Glu为3.10 fmol,Asp为1.30 fmol。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验