Burleson Gary R, Burleson Florence G
BRT-Burleson Research Technologies, Inc., Morrisville, North Carolina 27560, USA.
J Immunotoxicol. 2008 Jan;5(1):23-31. doi: 10.1080/15476910801897557.
The purpose of immunotoxicity testing is to obtain data that is meaningful for safety assessment. Host resistance assays are the best measure of a toxicant's effect on the overall ability to mount an effective immune response and protect the host from infectious disease. An outline is presented for immunotoxicological evaluation using host resistance assays. The influenza virus host resistance model is useful to evaluate the overall health of the immune system and is one of the most thoroughly characterized host resistance models. Viral clearance requires all aspects of the immune system to work together and is the ultimate measure of the health of the immune system in this model. Mechanistic immune functions may be included while measuring viral clearance and include: cytokines, macrophage activity, natural killer (NK) cell activity, cytotoxic T-lymphocyte (CTL) activity, and influenza-specific IgM and IgG. Measurement of these immunological functions provides an evaluation of innate immunity (macrophage or NK activity), an evaluation of cell-mediated immunity (CMI) (CTL activity), and an evaluation of humoral-mediated immunity (HMI) (influenza-specific IgM or IgG). Measurement of influenza-specific IgM or IgG also provides a measurement of T-dependent antibody response (TDAR) since influenza is a T-dependent antigen. There are several targeted host resistance models that may be used to answer specific questions. Should a defect in neutrophil and/or macrophage function be suspected, Streptococcus pneumoniae, Pseudomonas aeruginosa, or Listeria monocytogenes host resistance models are useful. Anti-inflammatory pharmaceuticals or therapeutics for rheumatoid arthritis or Crohn's disease that target TNFalpha may also be evaluated for immunotoxicity using the S. pneumoniae intranasal host resistance assay. Marginal zone B (MZB) cells are required for production of antibody to T-independent antigens such as the polysaccharide capsule of the encapsulated bacteria that are so prominent in causing blood-borne infections and pneumonia. Intravenous infection with Streptococcus pneumoniae, an encapsulated bacterium, results in a blood-borne infection that requires MZB cells for clearance. The systemic S. pneumoniae host resistance assay evaluates whether a therapeutic test article exerts immunotoxicity on MZB cells and measures the T-independent antibody response (TIAR). Suppression of CMI or in some cases HMI may result in reactivation of latent virus that may result in a fatal disease such as progressive multifocal leukoencephalopathy (PML). The murine cytomegalovirus (MCMV) reactivation model may be used to evaluate a pharmaceutical agent to determine if suppression of CMI or HMI results in reactivation of latent virus. Candida albicans is another host resistance model to test potential immunotoxicity. Host resistance assays have been the ultimate measure of immunotoxicity testing for environmental chemicals and pharmaceutical small molecules. Human biologicals are now an important component of the drug development armamentarium for biotech and pharmaceutical companies. Many human biologicals are fusions of IgG, and/or target immune mediators, immunological receptors, adhesion molecules, and/or are indicated for diseases that have immune components. It is therefore necessary to thoroughly evaluate human biological therapeutics for immunotoxicity. Numerous biologicals that are pharmacologically active in rodents can be evaluated using well-characterized rodent host resistance assays. However, biologicals not active in rodents may use surrogate biologicals for testing in rodent host resistance assays, or may use host resistance assays in genetically engineered mice that mimic the effect of the human biological pharmacological agent.
免疫毒性测试的目的是获取对安全性评估有意义的数据。宿主抵抗力测定是衡量毒物对产生有效免疫反应及保护宿主免受传染病侵害的整体能力影响的最佳方法。本文给出了使用宿主抵抗力测定进行免疫毒理学评估的概述。流感病毒宿主抵抗力模型对于评估免疫系统的整体健康状况很有用,是特征最全面的宿主抵抗力模型之一。病毒清除需要免疫系统的各个方面协同工作,是该模型中免疫系统健康状况的最终衡量标准。在测量病毒清除时可纳入免疫机制功能,包括:细胞因子、巨噬细胞活性、自然杀伤(NK)细胞活性、细胞毒性T淋巴细胞(CTL)活性以及流感特异性IgM和IgG。对这些免疫功能的测量可评估固有免疫(巨噬细胞或NK活性)、细胞介导免疫(CMI)(CTL活性)以及体液介导免疫(HMI)(流感特异性IgM或IgG)。对流感特异性IgM或IgG的测量还可衡量T细胞依赖性抗体反应(TDAR),因为流感是一种T细胞依赖性抗原。有几种针对性的宿主抵抗力模型可用于回答特定问题。如果怀疑中性粒细胞和/或巨噬细胞功能存在缺陷,肺炎链球菌、铜绿假单胞菌或单核细胞增生李斯特菌宿主抵抗力模型会很有用。针对肿瘤坏死因子α的类风湿关节炎或克罗恩病的抗炎药物或治疗剂,也可使用肺炎链球菌鼻内宿主抵抗力测定来评估其免疫毒性。边缘区B(MZB)细胞对于产生针对T细胞非依赖性抗原的抗体至关重要,例如在引起血源性感染和肺炎方面非常突出的包膜细菌的多糖荚膜。静脉注射肺炎链球菌(一种包膜细菌)会导致血源性感染,清除这种感染需要MZB细胞。全身性肺炎链球菌宿主抵抗力测定可评估受试治疗物品是否对MZB细胞产生免疫毒性,并测量T细胞非依赖性抗体反应(TIAR)。CMI或某些情况下HMI的抑制可能导致潜伏病毒重新激活,进而可能引发致命疾病,如进行性多灶性白质脑病(PML)。鼠巨细胞病毒(MCMV)重新激活模型可用于评估药物制剂,以确定CMI或HMI的抑制是否会导致潜伏病毒重新激活。白色念珠菌是另一种用于测试潜在免疫毒性的宿主抵抗力模型。宿主抵抗力测定一直是环境化学品和药物小分子免疫毒性测试的最终衡量标准。人类生物制品现在是生物技术和制药公司药物研发手段的重要组成部分。许多人类生物制品是IgG的融合体,和/或靶向免疫介质、免疫受体、黏附分子,和/或用于治疗具有免疫成分的疾病。因此,有必要对人类生物治疗剂进行全面的免疫毒性评估。许多在啮齿动物中有药理活性的生物制品可使用特征明确的啮齿动物宿主抵抗力测定进行评估。然而,在啮齿动物中无活性的生物制品可能使用替代生物制品在啮齿动物宿主抵抗力测定中进行测试,或者可能在模拟人类生物药理剂作用的基因工程小鼠中使用宿主抵抗力测定。