Suppr超能文献

肿瘤坏死因子阻断治疗期间结核病病因的数学建模

Mathematical modeling of the cause of tuberculosis during tumor necrosis factor blockade.

作者信息

Wallis Robert S

机构信息

PPD Inc., Washington, DC 20005, USA.

出版信息

Arthritis Rheum. 2008 Apr;58(4):947-52. doi: 10.1002/art.23285.

Abstract

OBJECTIVE

Tumor necrosis factor (TNF) blockade increases the risk of tuberculosis (TB). The purpose of this study was to use Markov modeling to examine the contributions of reactivation of latent tuberculous infection (LTBI) and the progression of new infection with Mycobacterium tuberculosis to active TB due to TNF blockade. These 2 pathogenic mechanisms cannot otherwise be readily distinguished.

METHODS

Monte Carlo simulation was used to represent the range of reported values for the incidence of TB associated with infliximab (TNF monoclonal antibody) and etanercept (soluble TNF receptor) therapy. Iterative methods were then used to identify for each pair of incidence rates the Markov model parameters that most accurately represented the distribution of time to onset of TB as reported to the Food and Drug Administration.

RESULTS

Modeling revealed an apparent median monthly rate of reactivation of LTBI by infliximab treatment of 20.8%, which was 12.1 times that with etanercept treatment (P<0.001). In contrast, both drugs appeared to pose a high risk of progression of new M tuberculosis infection to active TB. Progression of new infection appeared to cause nearly half of the etanercept-associated cases; it became the predominant cause of infliximab-associated cases only after the first year.

CONCLUSION

Despite sharing a common therapeutic target, infliximab and etanercept differ markedly in the rates at which they reactivate LTBI. Confirmation of these findings will require the application of molecular epidemiologic tools to studies of TB in future biologics registries. Hidden Markov modeling and Monte Carlo simulation are powerful tools for revealing otherwise hidden aspects of the pathogenesis of TB.

摘要

目的

肿瘤坏死因子(TNF)阻断剂会增加患结核病(TB)的风险。本研究的目的是使用马尔可夫模型来研究潜伏性结核感染(LTBI)的重新激活以及结核分枝杆菌新感染进展为活动性结核病对因TNF阻断剂导致的活动性结核病的影响。这两种致病机制在其他情况下难以轻易区分。

方法

使用蒙特卡罗模拟来表示与英夫利昔单抗(TNF单克隆抗体)和依那西普(可溶性TNF受体)治疗相关的结核病发病率的报告值范围。然后使用迭代方法为每对发病率确定最准确代表向美国食品药品监督管理局报告的结核病发病时间分布的马尔可夫模型参数。

结果

模型显示,英夫利昔单抗治疗导致LTBI重新激活的表观月中位数率为20.8%,是依那西普治疗的12.1倍(P<0.001)。相比之下,两种药物似乎都使新的结核分枝杆菌感染进展为活动性结核病的风险很高。新感染的进展似乎导致了近一半与依那西普相关的病例;仅在第一年之后,它才成为与英夫利昔单抗相关病例的主要原因。

结论

尽管英夫利昔单抗和依那西普具有共同的治疗靶点,但它们重新激活LTBI的速率明显不同。要证实这些发现,需要将分子流行病学工具应用于未来生物制剂注册研究中的结核病研究。隐马尔可夫模型和蒙特卡罗模拟是揭示结核病发病机制中其他隐藏方面的有力工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验