Helmick Lam, Antúnez de Mayolo Adriana, Zhang Ying, Cheng Chao-Min, Watkins Simon C, Wu Chuanyue, LeDuc Philip R
Department of Mechanical, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, USA.
Nano Lett. 2008 May;8(5):1303-8. doi: 10.1021/nl073144l. Epub 2008 Apr 4.
The ability to monitor the spatial and temporal organization of molecules such as biopolymers within a cell is essential to enable the ability to understand the complexity and dynamics existing in biological processes. However, many limitations currently exist in specifically labeling proteins in living cells. In our study, we incorporate nanometer-sized semiconductor quantum dots (QDs) into living cells for spatiotemporal protein imaging of actin polymers in Dictyostelium discoideum without the necessity of using complicating transmembrane transport approaches. We first demonstrate cytoplasmic distribution of QDs within these living amoebae cells and then show molecular targeting through actin filament labeling. Also, we have developed a microfluidic system to control and visualize the spatiotemporal response of the cellular environment during cell motility, which allows us to demonstrate specific localization control of the QD-protein complexes in living cells. This study provides a valuable tool for the specific targeting and analysis of proteins within Dictyostelium without the encumbrance of transmembrane assisted methods, which has implication in fields including polymer physics, material science, engineering, and biology.
监测细胞内生物聚合物等分子的空间和时间组织的能力,对于理解生物过程中存在的复杂性和动态性至关重要。然而,目前在活细胞中特异性标记蛋白质存在许多局限性。在我们的研究中,我们将纳米尺寸的半导体量子点(QD)引入活细胞,用于对盘基网柄菌中的肌动蛋白聚合物进行时空蛋白质成像,而无需使用复杂的跨膜运输方法。我们首先展示了量子点在这些活变形虫细胞内的细胞质分布,然后通过肌动蛋白丝标记展示了分子靶向。此外,我们开发了一种微流控系统,以控制和可视化细胞运动过程中细胞环境的时空响应,这使我们能够展示活细胞中量子点 - 蛋白质复合物的特异性定位控制。这项研究为在没有跨膜辅助方法负担的情况下对盘基网柄菌内的蛋白质进行特异性靶向和分析提供了有价值的工具,这在包括聚合物物理学、材料科学、工程学和生物学等领域都有重要意义。