Tzubery Tzvi, Rimon Abraham, Padan Etana
Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, 91904 Jerusalem, Israel.
J Biol Chem. 2008 Jun 6;283(23):15975-87. doi: 10.1074/jbc.M800482200. Epub 2008 Apr 3.
The three-dimensional crystal structure of Escherichia coli NhaA determined at pH 4 provided the first structural insights into the mechanism of antiport and pH regulation of a Na(+)/H(+) antiporter. However, because NhaA is activated at physiological pH (pH 6.5-8.5), many questions pertaining to the active state of NhaA have remained open including the structural and physiological roles of helix IX and its loop VIII-IX. Here we studied this NhaA segment (Glu(241)-Phe(267)) by structure-based biochemical approaches at physiological pH. Cysteine-scanning mutagenesis identified new mutations affecting the pH dependence of NhaA, suggesting their contribution to the "pH sensor." Furthermore mutation F267C reduced the H(+)/Na(+) stoichiometry of the antiporter, and F267C/F344C inactivated the antiporter activity. Tests of accessibility to [2-(trimethylammonium)ethyl]methanethiosulfonate bromide, a membrane-impermeant positively charged SH reagent with a width similar to the diameter of hydrated Na(+), suggested that at physiological pH the cytoplasmic cation funnel is more accessible than at acidic pH. Assaying intermolecular cross-linking in situ between single Cys replacement mutants uncovered the NhaA dimer interface at the cytoplasmic side of the membrane; between Leu(255) and the cytoplasm, many Cys replacements cross-link with various cross-linkers spanning different distances (10-18 A) implying a flexible interface. L255C formed intermolecular S-S bonds, cross-linked only with a 5-A cross-linker, and when chemically modified caused an alkaline shift of 1 pH unit in the pH dependence of NhaA and a 6-fold increase in the apparent K(m) for Na(+) of the exchange activity suggesting a rigid point in the dimer interface critical for NhaA activity and pH regulation.
在pH 4条件下测定的大肠杆菌NhaA的三维晶体结构首次为Na⁺/H⁺逆向转运蛋白的逆向转运机制和pH调节提供了结构上的见解。然而,由于NhaA在生理pH(pH 6.5 - 8.5)下被激活,许多与NhaA活性状态相关的问题仍未解决,包括螺旋IX及其环VIII - IX的结构和生理作用。在这里,我们在生理pH条件下通过基于结构的生化方法研究了这个NhaA片段(Glu²⁴¹ - Phe²⁶⁷)。半胱氨酸扫描诱变鉴定出影响NhaA pH依赖性的新突变,表明它们对“pH传感器”有贡献。此外,突变F267C降低了逆向转运蛋白的H⁺/Na⁺化学计量比,并且F267C/F344C使逆向转运蛋白活性失活。对[2 - (三甲基铵)乙基]甲硫基磺酸溴化物(一种膜不通透的带正电荷的SH试剂,其宽度与水合Na⁺的直径相似)的可及性测试表明,在生理pH下,细胞质阳离子通道比在酸性pH下更容易接近。对单个半胱氨酸替代突变体之间的分子间原位交联进行分析,揭示了膜细胞质侧的NhaA二聚体界面;在Leu²⁵⁵和细胞质之间,许多半胱氨酸替代物与跨越不同距离(10 - 18 Å)的各种交联剂发生交联,这意味着界面具有灵活性。L255C形成分子间二硫键,仅与5 Å的交联剂交联,并且在化学修饰时导致NhaA的pH依赖性发生1个pH单位的碱性偏移,以及交换活性的Na⁺表观Kₘ增加6倍,这表明二聚体界面中存在一个对NhaA活性和pH调节至关重要的刚性点。