Frangeul Antoine, Bussetta Cécile, Deval Jérôme, Barral Karine, Alvarez Karine, Canard Bruno
Centre National de la Recherche Scientifique and Universités d'Aix-Marseille I et II, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, Marseille, France.
Antivir Ther. 2008;13(1):115-24.
In the treatment of HIV, the loose active site of the HIV-1 reverse transcriptase (RT) allows numerous nucleotide analogues to act as proviral DNA 'chain-terminators'. Acyclic nucleotide phosphonate analogues (ANPs) represent a particular class of nucleotide analogue that does not possess a ribose moiety. The structural basis for their substrate efficiency regarding viral DNA polymerases is poorly understood.
Pre-steady-state kinetics on HIV-1 RT together with molecular modelling, were used to evaluate the relative characteristics of both the initial binding and incorporation into DNA of three different ANP diphosphates with progressively increasing steric demands on the acyclic linker: adefovir-diphosphate (DP), tenofovir-DP, and cidofovir-DP.
The increase of steric demand in ANPs induced a proportional loss of the binding affinity to wild-type HIV-1 RT (Kd cidofovir-DP>>Kd tenofovir-DP>Kd adefovir-DP approximately Kd dNTPs), consistent with the lack of HIV-1 inhibitory activity for cidofovir. We show that, starting from adefovir-DP, the steric constraints mainly map to Gln151, as its mutation to alanine provides cidofovir-DP sensitivity. Interactions between the Gln151 residue and the methyl group of tenofovir-DP further increase with the mutation Gln151Met, resulting in a specific discrimination and low-level resistance to tenofovir-DP. This alteration is the result of a dual decrease in the binding affinity (Kd) and the catalytic rate (k(pol)) of incorporation of tenofovir-DP. By contrast, the tenofovir resistance mutation K65R induces a broad 'k(pol)-dependent' nonspecific discrimination towards the three ANPs.
Overall, our results show that the efficiency of ANPs to compete against natural nucleotides as substrates for RT is determined by their close interaction with specific amino acids such as Gln151 within the RT active site. These results should help us to map and predict ANP sensitivity determinants in cellular and viral DNA polymerase active sites for which the understanding of different ANP sensitivity patterns are of medical importance.
在艾滋病病毒(HIV)治疗中,HIV-1逆转录酶(RT)的活性位点结构松散,使得众多核苷酸类似物能够充当原病毒DNA的“链终止剂”。无环核苷酸膦酸酯类似物(ANP)是一类特殊的核苷酸类似物,不具有核糖部分。人们对其作为病毒DNA聚合酶底物的效率的结构基础了解甚少。
采用HIV-1 RT的稳态前动力学以及分子建模,来评估三种不同的ANP二磷酸酯对HIV-1 RT的初始结合及掺入DNA的相对特性,这三种ANP二磷酸酯对无环连接子的空间位阻要求逐渐增加,分别为阿德福韦二磷酸酯(DP)、替诺福韦二磷酸酯和西多福韦二磷酸酯。
ANP中空间位阻需求的增加导致其与野生型HIV-1 RT的结合亲和力成比例下降(Kd西多福韦二磷酸酯>>Kd替诺福韦二磷酸酯>Kd阿德福韦二磷酸酯≈Kd脱氧核苷三磷酸),这与西多福韦缺乏HIV-1抑制活性一致。我们发现,从阿德福韦二磷酸酯开始,空间位阻主要映射到Gln151,因为将其突变为丙氨酸会使西多福韦二磷酸酯具有敏感性。Gln151残基与替诺福韦二磷酸酯的甲基之间的相互作用随着Gln151Met突变而进一步增强,导致对替诺福韦二磷酸酯产生特异性识别和低水平耐药性。这种改变是替诺福韦二磷酸酯结合亲和力(Kd)和掺入催化速率(k(pol))双重降低的结果。相比之下,替诺福韦耐药突变K65R对这三种ANP诱导出广泛的“k(pol)依赖性”非特异性识别。
总体而言,我们的结果表明,ANP作为RT底物与天然核苷酸竞争的效率取决于它们与RT活性位点内特定氨基酸(如Gln151)的紧密相互作用。这些结果应有助于我们在细胞和病毒DNA聚合酶活性位点中定位和预测ANP敏感性决定因素,了解不同的ANP敏感性模式具有重要医学意义。