Suppr超能文献

富含二硫键的小蛋白质的结构与折叠:来自分子动力学模拟和MM-PBSA自由能计算的见解

Structure and folding of disulfide-rich miniproteins: insights from molecular dynamics simulations and MM-PBSA free energy calculations.

作者信息

Combelles Cecil, Gracy Jérôme, Heitz Annie, Craik David J, Chiche Laurent

机构信息

Université de Montpellier, CNRS, UMR5048, Centre de Biochimie Structurale, 34090 Montpellier, France.

出版信息

Proteins. 2008 Oct;73(1):87-103. doi: 10.1002/prot.22054.

Abstract

The fold of small disulfide-rich proteins largely relies on two or more disulfide bridges that are main components of the hydrophobic core. Because of the small size of these proteins and their high cystine content, the cysteine connectivity has been difficult to ascertain in some cases, leading to uncertainties and debates in the literature. Here, we use molecular dynamics simulations and MM-PBSA free energy calculations to compare similar folds with different disulfide pairings in two disulfide-rich miniprotein families, namely the knottins and the short-chain scorpion toxins, for which the connectivity has been discussed. We first show that the MM-PBSA approach is able to discriminate the correct knotted topology of knottins from the laddered one. Interestingly, a comparison of the free energy components for kalata B1 and MCoTI-II suggests that cyclotides and squash inhibitors, although sharing the same scaffold, are stabilized through different interactions. Application to short-chain scorpion toxins suggests that the conventional cysteine pairing found in many homologous toxins is significantly more stable than the unconventional pairing reported for maurotoxin and for spinoxin. This would mean that native maurotoxin and spinoxin are not at the lowest free energy minimum and might result from kinetically rather than thermodynamically driven oxidative folding processes. For both knottins and toxins, the correct or conventional disulfide connectivities provide lower flexibilities and smaller deviations from the initial conformations. Overall, our work suggests that molecular dynamics simulations and the MM-PBSA approach to estimate free energies are useful tools to analyze and compare disulfide bridge connectivities in miniproteins.

摘要

富含二硫键的小蛋白的折叠很大程度上依赖于两个或更多的二硫键,这些二硫键是疏水核心的主要组成部分。由于这些蛋白体积小且胱氨酸含量高,在某些情况下,半胱氨酸的连接方式很难确定,这导致了文献中的不确定性和争议。在这里,我们使用分子动力学模拟和MM-PBSA自由能计算,来比较两个富含二硫键的小蛋白家族(即结蛋白和短链蝎毒素)中具有不同二硫键配对的相似折叠结构,关于它们的连接方式已有讨论。我们首先表明,MM-PBSA方法能够区分结蛋白正确的打结拓扑结构和阶梯状拓扑结构。有趣的是,对卡拉塔B1和MCoTI-II的自由能成分进行比较表明,环肽和南瓜抑制剂虽然共享相同的支架,但通过不同的相互作用实现稳定。将其应用于短链蝎毒素表明,许多同源毒素中发现的传统半胱氨酸配对比报道的毛罗毒素和刺尾蝎毒素的非传统配对要稳定得多。这意味着天然的毛罗毒素和刺尾蝎毒素并非处于最低自由能最小值,可能是由动力学而非热力学驱动的氧化折叠过程导致的。对于结蛋白和毒素来说,正确的或传统的二硫键连接方式具有更低的柔韧性,且与初始构象的偏差更小。总体而言,我们的工作表明,分子动力学模拟和用于估计自由能的MM-PBSA方法是分析和比较小蛋白中二硫键连接方式的有用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验