Tanter Mickael, Bercoff Jeremy, Athanasiou Alexandra, Deffieux Thomas, Gennisson Jean-Luc, Montaldo Gabriel, Muller Marie, Tardivon Anne, Fink Mathias
Laboratoire Ondes et Acoustique, ESPCI, CNRS UMR 7587, INSERM, Ecole Supérieure de Physique et de Chimie Industrielles, Paris Cedex05, France.
Ultrasound Med Biol. 2008 Sep;34(9):1373-86. doi: 10.1016/j.ultrasmedbio.2008.02.002. Epub 2008 Apr 8.
This paper presents an initial clinical evaluation of in vivo elastography for breast lesion imaging using the concept of supersonic shear imaging. This technique is based on the combination of a radiation force induced in tissue by an ultrasonic beam and an ultrafast imaging sequence capable of catching in real time the propagation of the resulting shear waves. The local shear wave velocity is recovered using a time-offlight technique and enables the 2-D mapping of shear elasticity. This imaging modality is implemented on a conventional linear probe driven by a dedicated ultrafast echographic device. Consequently, it can be performed during a standard echographic examination. The clinical investigation was performed on 15 patients, which corresponded to 15 lesions (4 cases BI-RADS 3, 7 cases BI-RADS 4 and 4 cases BI-RADS 5). The ability of the supersonic shear imaging technique to provide a quantitative and local estimation of the shear modulus of abnormalities with a millimetric resolution is illustrated on several malignant (invasive ductal and lobular carcinoma) and benign cases (fibrocystic changes and viscous cysts). In the investigated cases, malignant lesions were found to be significantly different from benign solid lesions with respect to their elasticity values. Cystic lesions have shown no shear wave propagate at all in the lesion (because shear waves do not propage in liquid). These preliminary clinical results directly demonstrate the clinical feasibility of this new elastography technique in providing quantitative assessment of relative stiffness of breast tissues. This technique of evaluating tissue elasticity gives valuable information that is complementary to the B-mode morphologic information. More extensive studies are necessary to validate the assumption that this new mode potentially helps the physician in both false-positive and false-negative rejection.
本文介绍了一种基于超声剪切波成像概念的乳腺病变活体弹性成像的初步临床评估。该技术基于超声束在组织中诱导的辐射力与能够实时捕捉由此产生的剪切波传播的超快成像序列的结合。使用飞行时间技术恢复局部剪切波速度,并实现剪切弹性的二维映射。这种成像方式是在由专用超快超声设备驱动的传统线性探头上实现的。因此,它可以在标准超声检查期间进行。对15名患者进行了临床研究,对应15个病变(4例BI-RADS 3级,7例BI-RADS 4级和4例BI-RADS 5级)。在几个恶性(浸润性导管癌和小叶癌)和良性病例(纤维囊性改变和粘性囊肿)中,展示了超声剪切波成像技术以毫米级分辨率对异常的剪切模量进行定量和局部估计的能力。在所研究的病例中,发现恶性病变与良性实性病变在弹性值方面有显著差异。囊性病变在病变中根本没有显示出剪切波传播(因为剪切波在液体中不传播)。这些初步临床结果直接证明了这种新的弹性成像技术在提供乳腺组织相对硬度定量评估方面的临床可行性。这种评估组织弹性的技术提供了与B模式形态学信息互补的有价值信息。需要进行更广泛的研究来验证这种新模式可能有助于医生减少假阳性和假阴性诊断的假设。