Suppr超能文献

使用遗传算法将微生物生态系统驱动至理想方向。

Using a genetic algorithm to drive a microbial ecosystem in a desirable direction.

作者信息

Vandecasteele Frederik P J, Crawford Ronald L, Hess Thomas F

机构信息

Department of Biological and Agricultural Engineering, University of Idaho, Moscow, ID 83844-0904, USA.

出版信息

Environ Microbiol. 2008 Jul;10(7):1823-30. doi: 10.1111/j.1462-2920.2008.01603.x. Epub 2008 Apr 8.

Abstract

The functioning of natural microbial ecosystems is influenced by various biotic and abiotic conditions. The careful experimental manipulation of environmental conditions can drive microbial ecosystems toward exhibiting desirable types of functionality. Such manipulations can be systematically approached by viewing them as a combinatorial optimization problem, in which the optimal configuration of environmental conditions is sought. Such an effort requires a sound optimization technique. Genetic algorithms are a class of optimization methods that should be suitable for such a task because they can deal with multiple interacting variables and with experimental noise and because they do not require an intricate understanding or modelling of the ecosystem of interest. We propose the use of genetic algorithms to drive undefined microbial ecosystems in desirable directions by combinatorially optimizing sets of environmental conditions. We tested this approach in a model system where the microbial ecosystem of a human saliva sample was manipulated in successive steps to display increasing amounts of azo dye decoloration. The results of our experiments indicated that a genetic algorithm was capable of optimizing ecosystem function by manipulating the presence or absence of a set of 10 chemical supplements. Genetic algorithms hold promise for use as a tool in environmental microbiology for the efficient control of the functioning of natural and undefined microbial ecosystems.

摘要

自然微生物生态系统的功能受到各种生物和非生物条件的影响。对环境条件进行精心的实验操控能够驱使微生物生态系统展现出理想的功能类型。通过将这些操控视为一个组合优化问题,即寻求环境条件的最优配置,可以系统地进行此类操控。这样的努力需要一种合理的优化技术。遗传算法是一类优化方法,应该适用于此类任务,因为它们能够处理多个相互作用的变量以及实验噪声,并且不需要对感兴趣的生态系统有复杂的理解或建模。我们提议使用遗传算法,通过对环境条件集进行组合优化,将未定义的微生物生态系统朝着理想的方向驱动。我们在一个模型系统中测试了这种方法,在该系统中,对人类唾液样本的微生物生态系统进行逐步操控,以使其表现出越来越多的偶氮染料脱色。我们的实验结果表明,遗传算法能够通过操控一组10种化学补充剂的存在与否来优化生态系统功能。遗传算法有望作为一种工具应用于环境微生物学,用于有效控制自然和未定义微生物生态系统的功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验