Coroneus John G, Goldsmith Brett R, Lamboy Jorge A, Kane Alexander A, Collins Philip G, Weiss Gregory A
Department of Molecular Biology and Biochemistry, University of California Irvine, California 92697-2025, USA.
Chemphyschem. 2008 May 16;9(7):1053-6. doi: 10.1002/cphc.200700863.
Real-time monitoring of carbon nanotube conductance during electrochemical and chemical etching reveals the electronic signatures of individual bond alteration events on the nanotube sidewall. Tracking the conductance of multiple single-molecule experiments through different synthetic protocols supports putative mechanisms for sidewall derivatization. Insights gained from these mechanistic observations imply the formation of sidewall carboxylates, which are useful as handles for bioconjugation. We describe an electronic state required for efficacious chemical treatment. Such real-time monitoring can improve carboxylate yields to 45 % or more. The experiments illustrate the power of molecular nanocircuits to uncover and direct the mechanisms of chemical reactions.
在电化学和化学蚀刻过程中对碳纳米管电导进行实时监测,揭示了纳米管侧壁上单个键改变事件的电子特征。通过不同合成方案跟踪多个单分子实验的电导,支持了侧壁衍生化的假定机制。从这些机理观察中获得的见解表明形成了侧壁羧酸盐,其可用作生物共轭的手柄。我们描述了有效化学处理所需的电子状态。这种实时监测可将羧酸盐产率提高到45%或更高。这些实验说明了分子纳米电路在揭示和指导化学反应机制方面的作用。