Suppr超能文献

阻塞性睡眠呼吸暂停患者睡眠期间上呼吸道神经肌肉代偿功能存在缺陷。

Upper airway neuromuscular compensation during sleep is defective in obstructive sleep apnea.

作者信息

McGinley Brian M, Schwartz Alan R, Schneider Hartmut, Kirkness Jason P, Smith Philip L, Patil Susheel P

机构信息

Johns Hopkins Sleep Disorders Center, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21224, USA.

出版信息

J Appl Physiol (1985). 2008 Jul;105(1):197-205. doi: 10.1152/japplphysiol.01214.2007. Epub 2008 Apr 10.

Abstract

Obstructive sleep apnea is the result of repeated episodes of upper airway obstruction during sleep. Recent evidence indicates that alterations in upper airway anatomy and disturbances in neuromuscular control both play a role in the pathogenesis of obstructive sleep apnea. We hypothesized that subjects without sleep apnea are more capable of mounting vigorous neuromuscular responses to upper airway obstruction than subjects with sleep apnea. To address this hypothesis we lowered nasal pressure to induce upper airway obstruction to the verge of periodic obstructive hypopneas (cycling threshold). Ten patients with obstructive sleep apnea and nine weight-, age-, and sex-matched controls were studied during sleep. Responses in genioglossal electromyography (EMG(GG)) activity (tonic, peak phasic, and phasic EMG(GG)), maximal inspiratory airflow (V(I)max), and pharyngeal transmural pressure (P(TM)) were assessed during similar degrees of sustained conditions of upper airway obstruction and compared with those obtained at a similar nasal pressure under transient conditions. Control compared with sleep apnea subjects demonstrated greater EMG(GG), V(I)max, and P(TM) responses at comparable levels of mechanical and ventilatory stimuli at the cycling threshold, during sustained compared with transient periods of upper airway obstruction. Furthermore, the increases in EMG(GG) activity in control compared with sleep apnea subjects were observed in the tonic but not the phasic component of the EMG response. We conclude that sustained periods of upper airway obstruction induce greater increases in tonic EMG(GG), V(I)max, and P(TM) in control subjects. Our findings suggest that neuromuscular responses protect individuals without sleep apnea from developing upper airway obstruction during sleep.

摘要

阻塞性睡眠呼吸暂停是睡眠期间上呼吸道反复阻塞发作的结果。最近的证据表明,上呼吸道解剖结构的改变和神经肌肉控制的紊乱在阻塞性睡眠呼吸暂停的发病机制中都起作用。我们假设,与患有睡眠呼吸暂停的受试者相比,没有睡眠呼吸暂停的受试者对上呼吸道阻塞更有能力产生强烈的神经肌肉反应。为了验证这一假设,我们降低鼻内压力以诱发上呼吸道阻塞至周期性阻塞性呼吸暂停的临界值(循环阈值)。在睡眠期间对10名阻塞性睡眠呼吸暂停患者和9名体重、年龄和性别匹配的对照者进行了研究。在相似程度的上呼吸道持续阻塞状态下,评估颏舌肌肌电图(EMG(GG))活动(紧张性、峰值相位性和相位性EMG(GG))、最大吸气气流(V(I)max)和咽部跨壁压(P(TM))的反应,并与在相似鼻内压力下短暂状态下获得的反应进行比较。与睡眠呼吸暂停受试者相比,对照组在循环阈值时,在机械和通气刺激水平相当的情况下,在上呼吸道持续阻塞与短暂阻塞期间,表现出更大的EMG(GG)、V(I)max和P(TM)反应。此外,与睡眠呼吸暂停受试者相比,对照组EMG(GG)活动的增加出现在肌电图反应的紧张性成分而非相位性成分中。我们得出结论,上呼吸道持续阻塞在对照组中引起紧张性EMG(GG)、V(I)max和P(TM)更大的增加。我们的研究结果表明,神经肌肉反应可保护没有睡眠呼吸暂停的个体在睡眠期间不发生上呼吸道阻塞。

相似文献

1
Upper airway neuromuscular compensation during sleep is defective in obstructive sleep apnea.
J Appl Physiol (1985). 2008 Jul;105(1):197-205. doi: 10.1152/japplphysiol.01214.2007. Epub 2008 Apr 10.
2
Neuromechanical control of upper airway patency during sleep.
J Appl Physiol (1985). 2007 Feb;102(2):547-56. doi: 10.1152/japplphysiol.00282.2006. Epub 2006 Sep 28.
3
Effect of age and weight on upper airway function in a mouse model.
J Appl Physiol (1985). 2011 Sep;111(3):696-703. doi: 10.1152/japplphysiol.00123.2011. Epub 2011 Jun 30.
4
Alteration in upper airway dilator muscle coactivation during sleep: comparison of patients with obstructive sleep apnea and healthy subjects.
J Appl Physiol (1985). 2018 Feb 1;124(2):421-429. doi: 10.1152/japplphysiol.01067.2016. Epub 2017 Nov 30.
5
Neuromechanical control of the isolated upper airway of mice.
J Appl Physiol (1985). 2008 Oct;105(4):1237-45. doi: 10.1152/japplphysiol.90461.2008. Epub 2008 Jul 24.
6
Influence of sleep onset on upper-airway muscle activity in apnea patients versus normal controls.
Am J Respir Crit Care Med. 1996 Jun;153(6 Pt 1):1880-7. doi: 10.1164/ajrccm.153.6.8665050.
7
Termination of respiratory events with and without cortical arousal in obstructive sleep apnea.
Am J Respir Crit Care Med. 2011 Nov 15;184(10):1183-91. doi: 10.1164/rccm.201106-0975OC. Epub 2011 Aug 11.
8
Compensatory responses to upper airway obstruction in obese apneic men and women.
J Appl Physiol (1985). 2012 Feb;112(3):403-10. doi: 10.1152/japplphysiol.00021.2011. Epub 2011 Nov 17.
9
Influence of gender on waking genioglossal electromyogram and upper airway resistance.
Am J Respir Crit Care Med. 1995 Aug;152(2):725-31. doi: 10.1164/ajrccm.152.2.7633734.
10
Enhanced upper-airway muscle responsiveness is a distinct feature of overweight/obese individuals without sleep apnea.
Am J Respir Crit Care Med. 2014 Oct 15;190(8):930-7. doi: 10.1164/rccm.201404-0783OC.

引用本文的文献

3
Tackling obstructive sleep apnea with pharmacotherapeutics: expert guidance.
Expert Opin Pharmacother. 2024 Jun;25(8):1019-1026. doi: 10.1080/14656566.2024.2365329. Epub 2024 Jun 24.
5
An Obstructive Sleep Apnea - A Novel Public Health Threat.
Physiol Res. 2023 Aug 31;72(4):415-423. doi: 10.33549/physiolres.935065.
7
Obstructive sleep apnea.
Handb Clin Neurol. 2022;189:105-136. doi: 10.1016/B978-0-323-91532-8.00017-3.
8
Barbed pharyngoplasty for the treatment of obstructive sleep apnea: the surgical learning curve.
Sleep Breath. 2022 Dec;26(4):1869-1874. doi: 10.1007/s11325-022-02579-1. Epub 2022 Feb 5.
9
Neural ventilatory drive decline as a predominant mechanism of obstructive sleep apnoea events.
Thorax. 2022 Jul;77(7):707-716. doi: 10.1136/thoraxjnl-2021-217756. Epub 2022 Jan 21.
10
Physiological Traits and Adherence to Sleep Apnea Therapy in Individuals with Coronary Artery Disease.
Am J Respir Crit Care Med. 2021 Sep 15;204(6):703-712. doi: 10.1164/rccm.202101-0055OC.

本文引用的文献

1
Effect of coactivation of tongue protrusor and retractor muscles on pharyngeal lumen and airflow in sleep apnea patients.
J Appl Physiol (1985). 2007 Nov;103(5):1662-8. doi: 10.1152/japplphysiol.00620.2007. Epub 2007 Aug 2.
2
Mechanisms used to restore ventilation after partial upper airway collapse during sleep in humans.
Thorax. 2007 Oct;62(10):861-7. doi: 10.1136/thx.2006.070300. Epub 2007 Apr 5.
3
Upper-airway inflammation triggered by vibration in a rat model of snoring.
Sleep. 2007 Feb;30(2):225-7. doi: 10.1093/sleep/30.2.225.
4
Neuromechanical control of upper airway patency during sleep.
J Appl Physiol (1985). 2007 Feb;102(2):547-56. doi: 10.1152/japplphysiol.00282.2006. Epub 2006 Sep 28.
5
Genioglossal muscle response to CO2 stimulation during NREM sleep.
Sleep. 2006 Apr;29(4):470-7. doi: 10.1093/sleep/29.4.470.
6
Laryngeal and velopharyngeal sensory impairment in obstructive sleep apnea.
Sleep. 2005 May;28(5):585-93. doi: 10.1093/sleep/28.5.585.
7
The effect of sleep onset on upper airway muscle activity in patients with sleep apnoea versus controls.
J Physiol. 2005 Apr 15;564(Pt 2):549-62. doi: 10.1113/jphysiol.2005.083659. Epub 2005 Feb 3.
8
Long-term intermittent hypoxia: reduced excitatory hypoglossal nerve output.
Am J Respir Crit Care Med. 2004 Sep 15;170(6):665-72. doi: 10.1164/rccm.200403-261OC. Epub 2004 Jun 30.
9
A simplified method for measuring critical pressures during sleep in the clinical setting.
Am J Respir Crit Care Med. 2004 Jul 1;170(1):86-93. doi: 10.1164/rccm.200309-1239OC. Epub 2004 Apr 7.
10
Upper airway response to electrical stimulation of the genioglossus in obstructive sleep apnea.
J Appl Physiol (1985). 2003 Nov;95(5):2023-9. doi: 10.1152/japplphysiol.00203.2003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验