de Valpine Perry, Rosenheim Jay A
Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720-3114, USA.
Ecology. 2008 Feb;89(2):532-41. doi: 10.1890/06-1996.1.
Robust analyses of noisy, stage-structured, irregularly spaced, field-scale data incorporating multiple sources of variability and nonlinear dynamics remain very limited, hindering understanding of how small-scale studies relate to large-scale population dynamics. We used a novel, complementary Bayesian and frequentist state-space model analysis to ask how density, temperature, plant nitrogen, and predators affect cotton aphid (Aphis gossypii) population dynamics in weekly data from 18 field-years and whether estimated effects are consistent with small-scale studies. We found clear roles of density and temperature but not of plant nitrogen or predators, for which Bayesian and frequentist evidence differed. However, overall predictability of field-scale dynamics remained low. This study demonstrates stage-structured state-space model analysis incorporating bottom-up, top-down, and density-dependent effects for within-season (nearly continuous time), nonlinear population dynamics. The analysis combines Bayesian posterior evidence with maximum-likelihood estimation and frequentist hypothesis testing using average one-step-ahead residuals.
对于包含多种变异性来源和非线性动力学的嘈杂、具有阶段结构、不规则间隔的田间尺度数据进行稳健分析仍然非常有限,这阻碍了人们理解小规模研究与大规模种群动态之间的关系。我们使用了一种新颖的、互补的贝叶斯和频率主义状态空间模型分析方法,来探究密度、温度、植物氮含量和捕食者如何影响来自18个田间年份的每周数据中的棉蚜(棉蚜)种群动态,以及估计的影响是否与小规模研究一致。我们发现密度和温度有明确作用,但植物氮含量或捕食者没有,贝叶斯和频率主义证据在这方面存在差异。然而,田间尺度动态的总体可预测性仍然较低。本研究展示了一种用于季节内(近乎连续时间)非线性种群动态的、纳入自下而上、自上而下和密度依赖效应的阶段结构状态空间模型分析。该分析将贝叶斯后验证据与最大似然估计以及使用平均一步预测残差的频率主义假设检验相结合。