Suppr超能文献

用于界面膜蛋白模拟的改进采样:广义阴影混合蒙特卡罗方法在肽毒素/双层系统中的应用

Improved sampling for simulations of interfacial membrane proteins: application of generalized shadow hybrid Monte Carlo to a peptide toxin/bilayer system.

作者信息

Wee Chze Ling, Sansom Mark S P, Reich Sebastian, Akhmatskaya Elena

机构信息

Department of Biochemistry, The University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.

出版信息

J Phys Chem B. 2008 May 8;112(18):5710-7. doi: 10.1021/jp076712u. Epub 2008 Apr 16.

Abstract

The computational costs associated with performing molecular dynamics (MD) simulations are still somewhat prohibitive and therefore limit the time and length scales that can be currently achieved. One approach to overcoming the limited size and duration of a simulation is to reduce the amount of detail when representing a system of interest, generally termed "coarse-graining". An alternative approach is via more efficient sampling methods that offer an enhanced search of a complex multidimensional energy landscape. One could also combine enhanced sampling methods with a coarse-grained (CG) force field. Here, we apply generalized shadow hybrid Monte Carlo (GSHMC), a recently proposed simulation protocol, to a biomolecular system of moderate size and show that GSHMC offers improved sampling compared to standard MD simulation. Our test system is a CG representation of a small peptide toxin interacting with a phospholipid bilayer. Specifically, we show that GSHMC allows for a quicker localization of the toxin to its equilibrium location of interaction at the headgroup/water interface of the bilayer. GSHMC therefore potentially allows for future exploration of larger and more complex systems over longer periods, which would otherwise be impractical to perform using conventional simulation methodology.

摘要

进行分子动力学(MD)模拟所涉及的计算成本仍然较高,因此限制了目前能够达到的时间和长度尺度。克服模拟规模和时长受限问题的一种方法是在表示感兴趣的系统时减少细节量,通常称为“粗粒化”。另一种方法是通过更高效的采样方法,对复杂的多维能量景观进行更全面的搜索。还可以将增强采样方法与粗粒化(CG)力场相结合。在此,我们将最近提出的模拟协议——广义影子混合蒙特卡罗(GSHMC)应用于中等规模的生物分子系统,并表明与标准MD模拟相比,GSHMC能提供更好的采样效果。我们的测试系统是一种小肽毒素与磷脂双层相互作用的CG表示。具体而言,我们表明GSHMC能使毒素更快地定位到其在双层头部基团/水界面的相互作用平衡位置。因此,GSHMC有可能在未来实现对更大、更复杂系统进行更长时间的探索,而使用传统模拟方法进行这些探索是不切实际的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验