Suppr超能文献

使用针对9肽训练的预测工具预测长度为8、10和11的肽的I类主要组织相容性复合体亲和力的精确近似方法。

Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers.

作者信息

Lundegaard Claus, Lund Ole, Nielsen Morten

机构信息

Center for Biological Sequence Analysis--CBS, Department of Systems Biology, The Technical University of Denmark--DTU, Kemitorvet Build. 208, 2800 Lyngby, Denmark.

出版信息

Bioinformatics. 2008 Jun 1;24(11):1397-8. doi: 10.1093/bioinformatics/btn128. Epub 2008 Apr 14.

Abstract

UNLABELLED

Several accurate prediction systems have been developed for prediction of class I major histocompatibility complex (MHC):peptide binding. Most of these are trained on binding affinity data of primarily 9mer peptides. Here, we show how prediction methods trained on 9mer data can be used for accurate binding affinity prediction of peptides of length 8, 10 and 11. The method gives the opportunity to predict peptides with a different length than nine for MHC alleles where no such peptides have been measured. As validation, the performance of this approach is compared to predictors trained on peptides of the peptide length in question. In this validation, the approximation method has an accuracy that is comparable to or better than methods trained on a peptide length identical to the predicted peptides.

AVAILABILITY

The algorithm has been implemented in the web-accessible servers NetMHC-3.0: http://www.cbs.dtu.dk/services/NetMHC-3.0, and NetMHCpan-1.1: http://www.cbs.dtu.dk/services/NetMHCpan-1.1

摘要

未标注

已经开发出几种用于预测I类主要组织相容性复合体(MHC):肽结合的精确预测系统。其中大多数是基于主要为9聚体肽的结合亲和力数据进行训练的。在此,我们展示了基于9聚体数据训练的预测方法如何用于准确预测长度为8、10和11的肽的结合亲和力。该方法为预测与9聚体长度不同的肽提供了机会,这些肽针对的是尚未测量此类肽的MHC等位基因。作为验证,将此方法的性能与针对所讨论肽长度的肽进行训练的预测器进行了比较。在该验证中,近似方法的准确性与针对与预测肽相同长度的肽进行训练的方法相当或更好。

可用性

该算法已在可通过网络访问的服务器NetMHC - 3.0:http://www.cbs.dtu.dk/services/NetMHC - 3.0和NetMHCpan - 1.1:http://www.cbs.dtu.dk/services/NetMHCpan - 1.1中实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验