Allison Stuart, Pei Hongxia, Haynes Margaret, Xin Yao, Law Lydia, Labrum Josh, Augustin Daphne
Department of Chemistry, Georgia State University, P.O. Box 4098, Atlanta, Georgia 30302-4098, USA. sallison.gsu.edu
J Phys Chem B. 2008 May 8;112(18):5858-66. doi: 10.1021/jp710700n. Epub 2008 Apr 17.
There are three objectives to the present work. First, starting from a boundary element (BE) formulation of low Reynolds number hydrodynamics, model the translational diffusion of macromolecules modeled as an array of non-overlapping beads, and show how this approach is equivalent to previous formulations of "bead hydrodynamics" and under what conditions. Second, show how this approach can be improved upon by accounting for the variation in forces over the surfaces of individual beads and also extending the approach to a gel modeled as an effective medium, EM. Third, develop a "combined obstruction and hydrodynamic effect" model of the translational diffusion of irregularly shaped macromolecules in a gel. In one of the cases studied, the BE approach is shown to be equivalent to previous "bead model" formulations in which intersubunit hydrodynamic interaction is modeled using the Rotne-Prager tensor. A bead model that accounts for the variation in hydrodynamic stress forces over the individual bead surfaces is shown to be in best agreement with exact results for simple bead arrays made up of 2-4 subunits. The translational diffusion of rods, modeled as strings of from 2 to 100 touching beads in dilute gels is examined. Interpolation formulas valid over a range of gel concentrations and rod lengths are derived for the parallel and perpendicular components of the diffusion tensor as well as the orientationally averaged diffusion tensor. The EM model accounts for the long-range hydrodynamic interaction exerted by the gel support matrix on the diffusing particle of interest but does not account for the reduction in diffusion caused by the direct obstruction of the gel, or steric effect. Both effects are accounted for by writing the translational diffusion in a gel as the product of two terms representing long-range hydrodynamic interaction and steric effects. Finally, the diffusion of a 564 base pair DNA in a 2% agarose gel is examined and model results are compared to experiment (Pluen, A.; Netti, P. A.; Jain, R. K.; Berk, D. A. Biophys. J. 1999, 77, 542-552). For reasonable choices of model parameters, fair agreement between theory and experiment is achieved.
本研究有三个目标。第一,从低雷诺数流体动力学的边界元(BE)公式出发,对建模为非重叠珠子阵列的大分子的平动扩散进行建模,并说明这种方法在何种条件下等同于先前的“珠子流体动力学”公式。第二,说明如何通过考虑单个珠子表面力的变化以及将该方法扩展到建模为有效介质(EM)的凝胶来改进此方法。第三,建立一个关于凝胶中不规则形状大分子平动扩散的“组合阻碍和流体动力学效应”模型。在所研究的一个案例中,BE方法被证明等同于先前的“珠子模型”公式,在该公式中,亚基间的流体动力学相互作用是使用罗特内 - 普拉格张量进行建模的。一个考虑了单个珠子表面流体动力学应力力变化的珠子模型被证明与由2 - 4个亚基组成的简单珠子阵列的精确结果最为吻合。研究了在稀凝胶中建模为2至100个接触珠子串的棒状分子的平动扩散。推导了在一系列凝胶浓度和棒长度范围内有效的扩散张量平行和垂直分量以及取向平均扩散张量的插值公式。EM模型考虑了凝胶支撑基质对感兴趣的扩散粒子施加的长程流体动力学相互作用,但没有考虑凝胶的直接阻碍或空间位阻效应导致的扩散降低。通过将凝胶中的平动扩散写成代表长程流体动力学相互作用和空间位阻效应的两项之积,这两种效应都得到了考虑。最后,研究了564个碱基对的DNA在2%琼脂糖凝胶中的扩散,并将模型结果与实验进行了比较(Pluen, A.; Netti, P. A.; Jain, R. K.; Berk, D. A. Biophys. J. 1999, 77, 542 - 552)。对于合理选择的模型参数,理论与实验之间取得了较好的一致性。