Suppr超能文献

通过结合磁共振成像和有限元分析对关节软骨进行力学特性分析:一种潜在的功能成像技术。

Mechanical characterization of articular cartilage by combining magnetic resonance imaging and finite-element analysis: a potential functional imaging technique.

作者信息

Julkunen P, Korhonen R K, Nissi M J, Jurvelin J S

机构信息

Department of Physics, University of Kuopio, Kuopio, Finland.

出版信息

Phys Med Biol. 2008 May 7;53(9):2425-38. doi: 10.1088/0031-9155/53/9/014. Epub 2008 Apr 17.

Abstract

Magnetic resonance imaging (MRI) provides a method for non-invasive characterization of cartilage composition and structure. We aimed to see whether T(1) and T(2) relaxation times are related to proteoglycan (PG) and collagen-specific mechanical properties of articular cartilage. Specifically, we analyzed whether variations in the depthwise collagen orientation, as assessed by the laminae obtained from T(2) profiles, affect the mechanical characteristics of cartilage. After MRI and unconfined compression tests of human and bovine patellar cartilage samples, fibril-reinforced poroviscoelastic finite-element models (FEM), with depthwise collagen orientations implemented from quantitative T(2) maps (3 laminae for human, 3-7 laminae for bovine), were constructed to analyze the non-fibrillar matrix modulus (PG specific), fibril modulus (collagen specific) and permeability of the samples. In bovine cartilage, the non-fibrillar matrix modulus (R = -0.64, p < 0.05) as well as the initial permeability (R = 0.70, p < 0.05) correlated with T(1). In bovine cartilage, T(2) correlated positively with the initial fibril modulus (R = 0.62, p = 0.05). In human cartilage, the initial fibril modulus correlated negatively (R = -0.61, p < 0.05) with T(2). Based on the simulations, cartilage with a complex collagen architecture (5 or 7 laminae), leading to high bulk T(2) due to magic angle effects, provided higher compressive stiffness than tissue with a simple collagen architecture (3 laminae). Our results suggest that T(1) reflects PG-specific mechanical properties of cartilage. High T(2) is characteristic to soft cartilage with a classical collagen architecture. Contradictorily, high bulk T(2) can also be found in stiff cartilage with a multilaminar collagen fibril network. By emerging MRI and FEM, the present study establishes a step toward functional imaging of articular cartilage.

摘要

磁共振成像(MRI)提供了一种用于非侵入性表征软骨组成和结构的方法。我们旨在研究T(1)和T(2)弛豫时间是否与关节软骨的蛋白聚糖(PG)和胶原蛋白特异性力学性能相关。具体而言,我们分析了通过从T(2)剖面图获得的薄片评估的深度方向胶原蛋白取向的变化是否会影响软骨的力学特性。在对人和牛的髌软骨样本进行MRI和无侧限压缩试验后,构建了纤维增强多孔粘弹性有限元模型(FEM),其深度方向的胶原蛋白取向由定量T(2)图(人3层,牛3 - 7层)实现,以分析样本的非纤维状基质模量(PG特异性)、纤维模量(胶原蛋白特异性)和渗透率。在牛软骨中,非纤维状基质模量(R = -0.64,p < 0.05)以及初始渗透率(R = 0.70,p < 0.05)与T(1)相关。在牛软骨中,T(2)与初始纤维模量呈正相关(R = 0.62,p = 0.05)。在人软骨中,初始纤维模量与T(2)呈负相关(R = -0.61,p < 0.05)。基于模拟,具有复杂胶原蛋白结构(5或7层)的软骨由于魔角效应导致高整体T(2),其提供的压缩刚度高于具有简单胶原蛋白结构(3层)的组织。我们的结果表明,T(1)反映了软骨的PG特异性力学性能。高T(2)是具有经典胶原蛋白结构的软软骨的特征。矛盾的是,在具有多层胶原蛋白纤维网络的硬软骨中也可以发现高整体T(2)。通过新兴的MRI和FEM,本研究朝着关节软骨的功能成像迈出了一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验