Suppr超能文献

分子氢与开放过渡金属中心的相互作用以增强金属有机框架中的结合:一项计算研究。

Interaction of molecular hydrogen with open transition metal centers for enhanced binding in metal-organic frameworks: a computational study.

作者信息

Lochan Rohini C, Khaliullin Rustam Z, Head-Gordon Martin

机构信息

Department of Chemistry, University of California and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.

出版信息

Inorg Chem. 2008 May 19;47(10):4032-44. doi: 10.1021/ic701625g. Epub 2008 Apr 19.

Abstract

Molecular hydrogen is known to form stable, "nonclassical" sigma complexes with transition metal centers that are stabilized by donor-acceptor interactions and electrostatics. In this computational study, we establish that strong H2 sorption sites can be obtained in metal-organic frameworks by incorporating open transition metal sites on the organic linkers. Using density functional theory and energy decomposition analysis, we investigate the nature and characteristics of the H2 interaction with models of exposed open metal binding sites {half-sandwich piano-stool shaped complexes of the form (Arene)ML(3- n)(H2)n [M=Cr, Mo, V(-), Mn(+); Arene = C6H5X (X=H, F, Cl, OCH3, NH2, CH3, CF3) or C6H3Y2X (Y=COOH, X=CF3, Cl; L=CO; n=1-3]}. The metal-H2 bond dissociation energy of the studied complexes is calculated to be between 48 and 84 kJ/mol, based on the introduction of arene substituents, changes to the metal core, and of charge-balancing ligands. Thus, design of the binding site controls the H2 binding affinity and could be potentially used to control the magnitude of the H2 interaction energy to achieve reversible sorption characteristics at ambient conditions. Energy decomposition analysis illuminates both the possibilities and present challenges associated with rational materials design.

摘要

已知分子氢能与过渡金属中心形成稳定的“非经典”σ配合物,这些配合物通过供体-受体相互作用和静电作用得以稳定。在这项计算研究中,我们证实通过在有机连接体上引入开放的过渡金属位点,可以在金属有机框架中获得强H₂吸附位点。利用密度泛函理论和能量分解分析,我们研究了H₂与暴露的开放金属结合位点模型{形式为(Arene)ML(3 - n)(H₂)n的半夹心钢琴凳形配合物[M = Cr、Mo、V(-)、Mn(+); Arene = C₆H₅X (X = H、F、Cl、OCH₃、NH₂、CH₃、CF₃) 或 C₆H₃Y₂X (Y = COOH, X = CF₃、Cl; L = CO; n = 1 - 3]}之间相互作用的性质和特征。基于芳烃取代基的引入、金属核的变化以及电荷平衡配体,计算出所研究配合物的金属-H₂键解离能在48至84 kJ/mol之间。因此,结合位点的设计控制着H₂的结合亲和力,并有可能用于控制H₂相互作用能的大小,以在环境条件下实现可逆吸附特性。能量分解分析揭示了合理材料设计的可能性和当前面临的挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验