Horie Ryota
Laboratory for Language Development, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
J Theor Biol. 2008 Jul 7;253(1):45-54. doi: 10.1016/j.jtbi.2008.02.029. Epub 2008 Feb 29.
Different biological dynamics are often described by different mathematical equations. On the other hand, some mathematical models describe many biological dynamics universally. Here, we focus on three biological dynamics: the Lotka-Volterra equation, the Hopfield neural networks, and the replicator equation. We describe these three dynamical models using a single optimization framework, which is constructed with employing the Riemannian geometry. Then, we show that the optimization structures of these dynamics are identical, and the differences among the three dynamics are only in the constraints of the optimization. From this perspective, we discuss the unified view for biological dynamics. We also discuss the plausible categorizations, the fundamental nature, and the efficient modeling of the biological dynamics, which arise from the optimization perspective of the dynamical systems.
不同的生物动力学通常由不同的数学方程来描述。另一方面,一些数学模型能普遍描述多种生物动力学。在此,我们聚焦于三种生物动力学:洛特卡 - 沃尔泰拉方程、霍普菲尔德神经网络和复制者方程。我们使用一个基于黎曼几何构建的单一优化框架来描述这三种动力学模型。然后,我们表明这些动力学的优化结构是相同的,这三种动力学之间的差异仅在于优化的约束条件。从这个角度,我们讨论生物动力学的统一观点。我们还讨论了基于动力系统优化视角而产生的生物动力学的合理分类、基本性质以及有效建模。