Mananga E S, Hsu C D, Ishmael S, Islam T, Boutis G S
York College, The City University of New York, Department of Earth and Physical Sciences, 94-20 Guy R. Brewer Boulevard, Jamaica, NY 11451, USA.
J Magn Reson. 2008 Jul;193(1):10-22. doi: 10.1016/j.jmr.2008.03.014. Epub 2008 Apr 3.
In this work, we investigate the accuracy of controlling spin I=1, 3/2 and 5/2 spin systems by average Hamiltonian theory. By way of example, we consider a simple two-pulse echo sequence and compare this perturbation scheme to a numerical solution of the Von Neumann equation. For the different values of I, we examine this precision as a function of the quadrupolar coupling as well as various experimental parameters such as the pulse spacing and pulse width. Experiments and simulations on I=3/2 and I=5/2 spin systems are presented that highlight a spectral artifact introduced due to finite pulse widths as predicted by average Hamiltonian theory. The control of these spin systems by this perturbation scheme is considered by investigating a phase cycling scheme that suppresses these artifacts to zeroth-order of the Magnus expansion.
在这项工作中,我们通过平均哈密顿量理论研究了控制自旋I = 1、3/2和5/2自旋系统的准确性。作为示例,我们考虑一个简单的双脉冲回波序列,并将这种微扰方案与冯·诺依曼方程的数值解进行比较。对于I的不同值,我们将这种精度作为四极耦合以及各种实验参数(如脉冲间隔和脉冲宽度)的函数进行研究。给出了对I = 3/2和I = 5/2自旋系统的实验和模拟,这些实验和模拟突出了如平均哈密顿量理论所预测的由于有限脉冲宽度而引入的光谱伪影。通过研究一种将这些伪影抑制到马格努斯展开零阶的相位循环方案,来考虑用这种微扰方案对这些自旋系统进行控制。