Suppr超能文献

利用高通量数据进行蛋白质功能预测。

Protein function prediction with high-throughput data.

作者信息

Zhao Xing-Ming, Chen Luonan, Aihara Kazuyuki

机构信息

ERATO Aihara Complexity Modelling Project, JST, Tokyo, 151-0064, Japan.

出版信息

Amino Acids. 2008 Oct;35(3):517-30. doi: 10.1007/s00726-008-0077-y. Epub 2008 Apr 22.

Abstract

Protein function prediction is one of the main challenges in post-genomic era. The availability of large amounts of high-throughput data provides an alternative approach to handling this problem from the computational viewpoint. In this review, we provide a comprehensive description of the computational methods that are currently applicable to protein function prediction, especially from the perspective of machine learning. Machine learning techniques can generally be classified as supervised learning, semi-supervised learning and unsupervised learning. By classifying the existing computational methods for protein annotation into these three groups, we are able to present a comprehensive framework on protein annotation based on machine learning techniques. In addition to describing recently developed theoretical methodologies, we also cover representative databases and software tools that are widely utilized in the prediction of protein function.

摘要

蛋白质功能预测是后基因组时代的主要挑战之一。大量高通量数据的可用性从计算角度提供了一种处理该问题的替代方法。在本综述中,我们全面描述了目前适用于蛋白质功能预测的计算方法,特别是从机器学习的角度。机器学习技术通常可分为监督学习、半监督学习和无监督学习。通过将现有的蛋白质注释计算方法分为这三类,我们能够基于机器学习技术提出一个全面的蛋白质注释框架。除了描述最近开发的理论方法外,我们还涵盖了在蛋白质功能预测中广泛使用的代表性数据库和软件工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验