Suppr超能文献

基于高密度SNP芯片的澳大利亚荷斯坦-弗里生奶牛全基因组连锁不平衡程度

Extent of genome-wide linkage disequilibrium in Australian Holstein-Friesian cattle based on a high-density SNP panel.

作者信息

Khatkar Mehar S, Nicholas Frank W, Collins Andrew R, Zenger Kyall R, Cavanagh Julie A L, Barris Wes, Schnabel Robert D, Taylor Jeremy F, Raadsma Herman W

机构信息

Centre for Advanced Technologies in Animal Genetics and Reproduction (ReproGen), University of Sydney, Camden, NSW 2570, Australia.

出版信息

BMC Genomics. 2008 Apr 24;9:187. doi: 10.1186/1471-2164-9-187.

Abstract

BACKGROUND

The extent of linkage disequilibrium (LD) within a population determines the number of markers that will be required for successful association mapping and marker-assisted selection. Most studies on LD in cattle reported to date are based on microsatellite markers or small numbers of single nucleotide polymorphisms (SNPs) covering one or only a few chromosomes. This is the first comprehensive study on the extent of LD in cattle by analyzing data on 1,546 Holstein-Friesian bulls genotyped for 15,036 SNP markers covering all regions of all autosomes. Furthermore, most studies in cattle have used relatively small sample sizes and, consequently, may have had biased estimates of measures commonly used to describe LD. We examine minimum sample sizes required to estimate LD without bias and loss in accuracy. Finally, relatively little information is available on comparative LD structures including other mammalian species such as human and mouse, and we compare LD structure in cattle with public-domain data from both human and mouse.

RESULTS

We computed three LD estimates, D', Dvol and r2, for 1,566,890 syntenic SNP pairs and a sample of 365,400 non-syntenic pairs. Mean D' is 0.189 among syntenic SNPs, and 0.105 among non-syntenic SNPs; mean r2 is 0.024 among syntenic SNPs and 0.0032 among non-syntenic SNPs. All three measures of LD for syntenic pairs decline with distance; the decline is much steeper for r2 than for D' and Dvol. The value of D' and Dvol are quite similar. Significant LD in cattle extends to 40 kb (when estimated as r2) and 8.2 Mb (when estimated as D'). The mean values for LD at large physical distances are close to those for non-syntenic SNPs. Minor allelic frequency threshold affects the distribution and extent of LD. For unbiased and accurate estimates of LD across marker intervals spanning < 1 kb to > 50 Mb, minimum sample sizes of 400 (for D') and 75 (for r2) are required. The bias due to small samples sizes increases with inter-marker interval. LD in cattle is much less extensive than in a mouse population created from crossing inbred lines, and more extensive than in humans.

CONCLUSION

For association mapping in Holstein-Friesian cattle, for a given design, at least one SNP is required for each 40 kb, giving a total requirement of at least 75,000 SNPs for a low power whole-genome scan (median r2 > 0.19) and up to 300,000 markers at 10 kb intervals for a high power genome scan (median r2 > 0.62). For estimation of LD by D' and Dvol with sufficient precision, a sample size of at least 400 is required, whereas for r2 a minimum sample of 75 is adequate.

摘要

背景

群体内连锁不平衡(LD)的程度决定了成功进行关联作图和标记辅助选择所需的标记数量。迄今为止,大多数关于牛LD的研究是基于微卫星标记或覆盖一条或仅几条染色体的少量单核苷酸多态性(SNP)。这是第一项通过分析1546头荷斯坦 - 弗里生公牛的基因分型数据进行的关于牛LD程度的全面研究,这些公牛针对覆盖所有常染色体所有区域的15036个SNP标记进行了基因分型。此外,大多数牛的研究使用的样本量相对较小,因此,可能对常用于描述LD的指标估计存在偏差。我们研究了无偏差估计LD且不损失准确性所需的最小样本量。最后,关于包括人类和小鼠等其他哺乳动物物种在内的比较LD结构的信息相对较少,我们将牛的LD结构与来自人类和小鼠的公共领域数据进行了比较。

结果

我们计算了1566890对同线SNP和365400对非同线SNP对的三种LD估计值,即D'、Dvol和r2。同线SNP之间的平均D'为0.189,非同线SNP之间的平均D'为0.105;同线SNP之间的平均r2为0.024,非同线SNP之间的平均r2为0.0032。同线对的所有三种LD测量值均随距离下降;r2的下降比D'和Dvol陡峭得多。D'和Dvol的值非常相似。牛中的显著LD延伸至40 kb(以r2估计时)和8.2 Mb(以D'估计时)。大物理距离处的LD平均值接近非同线SNP的平均值。次要等位基因频率阈值影响LD的分布和范围。对于跨越<1 kb至>50 Mb的标记区间进行无偏差且准确的LD估计,需要最小样本量为400(对于D')和75(对于r2)。由于样本量小导致的偏差随标记间间隔增加。牛中的LD比通过杂交近交系产生的小鼠群体中的LD范围小得多,比人类中的LD范围大。

结论

对于荷斯坦 - 弗里生牛的关联作图,对于给定设计,每40 kb至少需要一个SNP,对于低功率全基因组扫描(中位数r2>0.19)总共至少需要75000个SNP,对于高功率基因组扫描(中位数r2>0.62)以10 kb间隔则需要多达300000个标记。为了以足够的精度通过D'和Dvol估计LD,需要至少400的样本量,而对于r2,最小样本量75就足够了。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da9a/2386485/07ba8580acfe/1471-2164-9-187-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验